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Introduction

As AI capabilities evolve rapidly, AI research is also 
undergoing a fast and significant transformation 
along many dimensions, including its topics, 
its methods, the research community, and the 
working environment. Topics such as AI reasoning 
and agentic AI have been studied for decades but 
now have an expanded scope in light of current AI 
capabilities and limitations. AI ethics and safety, AI 
for social good, and sustainable AI have become 
central themes in all major AI conferences. 
Moreover, research on AI algorithms and 
software systems is becoming increasingly tied 
to substantial amounts of dedicated AI hardware, 
notably GPUs, which leads to AI architecture co-
creation, in a way that is more prominent now 
than over the last 3 decades. Related to this shift, 
more and more AI researchers work in corporate 
environments, where the necessary hardware 
and other resources are more easily available, 
compared to academia, questioning the roles 
of academic AI research, student retention, and 
faculty recruiting. 

The pervasive use of AI in our daily lives and its 
impact on people, society, and the environment 
makes AI a socio-technical field of study, thus 
highlighting the need for AI researchers to work 
with experts from other disciplines, such as 
psychologists, sociologists, philosophers, and 
economists. The growing focus on emergent AI 
behaviors rather than on designed and validated 
properties of AI systems renders principled 
empirical evaluation more important than 
ever. Hence the need arises for well-designed 
benchmarks, test methodologies, and sound 
processes to infer conclusions from the results of 
computational experiments. The exponentially 
increasing quantity of AI research publications 
and the speed of AI innovation are testing the 

resilience of the peer-review system, with the 
immediate release of papers without peer-review 
evaluation having become widely accepted across 
many areas of AI research. Legacy and social media 
increasingly cover AI research advancements, 
often with contradictory statements that confuse 
the readers and blur the line between reality and 
perception of AI capabilities. All this is happening 
in a geo-political environment, in which 
companies and countries compete fiercely and 
globally to lead the AI race. This rivalry may impact 
access to research results and infrastructure as 
well as global governance efforts, underscoring the 
need for international cooperation in AI research 
and innovation.

In this overwhelming multi-dimensional and 
very dynamic scenario, it is important to be able 
to clearly identify the trajectory of AI research in 
a structured way. Such an effort can define the 
current trends and the research challenges still 
ahead of us to make AI more capable and reliable, 
so we can safely use it in mundane but also, most 
importantly, in high-stake scenarios.

This study aims to do this by including 17 topics 
related to AI research, covering most of  
the transformations mentioned above. Each 
chapter of the study is devoted to one of these 
topics, sketching its history, current trends  
and open challenges. 

To conduct this study, I selected a very diverse 
group of 24 experienced AI researchers, who 
generously accepted my invitation and devoted 
a significant amount of time to this effort. We 
all worked together between summer 2024 and 
spring 2025 to structure the study, define the 
main topics, discuss the content, comment and 
contribute to the various chapters. 
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Additionally, some chapters engaged also with 
additional contributors who brought their 
expertise on a specific topic. The work was done 
mostly online, with monthly calls with all panel 
members plus additional calls for the team 
working on each chapter, with also in a full-day in-
person meeting, held in January 2025.

However, we also wanted to include the opinion 
of the entire AAAI community, so we launched 
an extensive survey on the topics of the study, 
which engaged 475 respondents, of which about 
20% were students. Among the respondents, 
academia was given as the main affiliation (67%), 
followed by corporate research environment 
(19%). Geographically, the most represented areas 
are North America (53%), Asia (20%), and Europe 
(19%) . While the vast majority of the respondents 
listed AI as one of their primary fields of study, 
there were also mentions of other fields, such 
as neuroscience, medicine, biology, sociology, 
philosophy, political science, and economics. This 
multi-field involvement was also reflected in an 
interest in multi-disciplinary research from 95% of 
the respondents.

Each chapter of this report includes a brief 
summary of the responses to questions related to 
the respective topic.

The work around the entire study has been 
generously supported and made possible by the 
amazing work of Meredith Ellison, AAAI Executive  
Director, and the AAAI office staff, who also 
prepared and delivered the survey.

I hope that this report will be useful to the whole 
AI research community. However, the report has 
been intentionally written in a non-technical 
way, to reach out to other audiences, including 
experts of other disciplines, policy makers, funding 
agencies, the media, and the general public. 
We all need to work together to advance AI in a 
responsible way, to make sure that technological 
progress supports the progress of humanity and is 
aligned to human values. 
 
 
 
 
Francesca Rossi 
AAAI President, 2022-2025

The panel’s findings are opinions of the panel members and do not represent the 
opinion of their institutions or companies.
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AI Reasoning
The ability to reason has been a salient characteristic of  
human intelligence, and there is a critical need for verifiable 
reasoning in AI systems. 

Main Takeaways
•	 Reasoning has always been seen as a core characteristic of human intelligence. 

Reasoning is used to derive new information from given base knowledge; this 
new information is guaranteed correct when sound formal reasoning is used, 
otherwise it is merely plausible.

•	 AI research has led to a range of automated reasoning techniques. These 
reasoning techniques have given rise to AI algorithms and systems, including 
SAT, SMT, and constraints solvers as well as probabilistic graphical models, all of 
which play a key role in critical real-world applications. 

•	 While large pre-trained systems (such as LLMs) have made impressive 
advancements in their reasoning capabilities, more research is needed to 
guarantee correctness and depth of the reasoning performed by them; such 
guarantees are particularly important for autonomously operating AI agents.

CHAIRS

Christian Bessiere,  
University of Montpellier

Holger Hoos,  
RWTH Aachen University, 
Germany and Leiden 
University, The Netherlands

Subbarao Kambhampati, 
Arizona State University
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Context & History
Reasoning is a core component of 
human intelligence. From the dawn 
of humanity, abductive reasoning 
has been used to predict danger and 
inductive reasoning made it possible to 
learn regularities governing the world. 
Beginning in Ancient Greece, deductive 
reasoning techniques were developed 
to draw valid conclusions that follow 
logically from premises known to be 
true. The development of reasoning 
methods with such a priori guarantees 
was a key factor in the advancement 
of modern science, mathematics, and 
engineering; notably, according to 
philosophers such as Charles Sanders 
Peirce, the interplay between abduction, 
deduction, and induction forms the 
basis of the scientific method and 
hence all modern science. Attempts 
to mechanize logical reasoning can be 
traced back to 13th-century philosopher 
Ramon Lull and lie at the heart of the 
concept of computation. Probabilistic 
reasoning and inference have also 
profoundly impacted reasoning, often 
relying on the celebrated theorem by 
Thomas Bayes on inverse probability 
that also forms the basis for many 
machine learning and statistics 
approaches. Finally, the evaluation of 
correct (sound) reasoning lies at the 
heart of most quantitative assessments 
of human cognition.

Not surprisingly, reasoning has been 
central to the AI enterprise. Indeed, 
the earliest research in AI – from Logic 
Theorist onwards [1] – had a strong 
focus on reasoning [2]. Since the 1960s, 
AI has also embraced probabilistic 
reasoning and models, initially for 
medical diagnosis [3]. Since then, 
the reasoning tasks addressed in AI 
research have covered the gamut from 

planning and temporal reasoning to 
diagnosis and explanation. While early 
AI has paid attention to both plausible 
reasoning (case-based, analogical, 
qualitative) and sound formal reasoning 
with guarantees (logical, probabilistic, 
constraint-based), over the years, 
the focus has shifted more towards 
reasoning with formal guarantees. 
There are good reasons for this when 
designing AI systems and techniques 
that compensate for human limitations 
and weaknesses since reasoning 
with guarantees is challenging for 
humans. This has led to practically 
impactful applications of AI systems 
such as SAT, SMT, and constraints 
solvers, including the verification of 
correctness properties of computer 
hardware and software, the safety of 
communications protocols, the design 
of new proteins, and, more recently, the 
robustness of neural networks against 
adversarial attacks. It has also resulted 
in probabilistic graphical models [4, 5], 
which are powerful modeling  
and inference tools that have found 
their way into numerous applications  
of reasoning in medicine, robotics,  
and beyond.

Current State & Trends
The emergence of the Internet and the 
associated technology that made it 
possible to capture the human digital 
footprint at scale, as well as the leaps in 
computing power, have made possible 
novel approaches to learning bottom-
up from data. Of particular interest are 
large pre-trained models, such as LLMs, 
that have shown surprising abilities in 
plausible reasoning. Unlike the earlier 
research on reasoning in AI, LLMs 
have focused on plausible reasoning 
patterns as they emerge automatically 

after large-scale training on petabyte 
corpora. While the results have been 
quite remarkable so far, the reasoning in 
this context has been of the “plausible” 
variety with no guarantees.

Meanwhile, sound formal reasoning 
techniques remain key to important 
and impactful applications of cutting-
edge AI technology for the verification 
of computer hardware and software, 
as well as for real-world planning and 
resource allocation problems. They 
are also increasingly recognized as a 
crucial basis for the formal verification 
of machine learning techniques such 
as neural networks, e.g., in the context 
of local robustness against adversarial 
attacks [6]. Significant research activity 
takes place in these areas, focusing on 
improving various types of reasoning 
algorithms (notably with respect to their 
computational complexity), leveraging 
learning within sound formal reasoning, 
and combining reasoning and learning 
techniques [7, 8].

Research Challenges
Bringing some of the rigorous a priori or 
post hoc guarantees back into plausible 
reasoning patterns turbocharged by 
the pre-trained models has become an 
active and promising area of research 
– especially where AI systems need to 
work autonomously in safety-critical 
domains. Research on so-called “large 
reasoning models” as well as on neuro-
symbolic approaches is addressing 
these challenges. 

Furthermore, even though formal 
reasoning with correctness guarantees 
is currently considerably less in vogue 
than the use of generative AI techniques 
for plausible reasoning, formidable and 
essential challenges also remain in that 

AI Reasoning
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AI Reasoning

area. In this context, the combination 
of machine learning techniques with 
formal reasoning techniques holds 
considerable promise for economically 
and socially valuable breakthroughs, 
notably in the area of AI safety  
and transparency.

The questions and challenges we face 
range from the philosophical:

•	 What exactly is “reasoning”? 

to the practical: 

•	 Can LLM ‘reasoning’ be trusted?

and include: 

•	 What does the future hold for  
the advancement and role of 
symbolic reasoning?

•	 To what extent can LLMs or other 
generative models reproduce or 
replace symbolic reasoning? 

•	 To what degree will symbolic 
reasoning be necessary or sufficient 
to overcome the current limitations 
of LLMs? 

•	 How well can AI reasoning, 
especially LLM ‘reasoning,’ be 
explained and understood? 

•	 How can computers better 
understand and simulate human 
reasoning?

•	 What is the role of collaborative 
reasoning between humans  
and computers?

•	 How best can LLMs and symbolic 
reasoning be integrated into “neuro-
symbolic reasoning”?

•	 Are further breakthroughs,  
beyond both LLMs and traditional 
symbolic reasoning, required to 
achieve AGI-level reasoning?

•	 What forms of reasoning can best 
support humans when dealing  
with various challenges, e.g., in 
medical, scientific, engineering, and 
legal domains?

https://arxiv.org/abs/2501.12948
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COMMUNITY OPINION

AI Reasoning

The AAAI community appears to strongly agree 
on the importance of reasoning in AI systems. 
In our community survey, slightly over 55% 
of the respondents chose to answer specific 
questions related to the topic of reasoning. Of 
these, 79% indicated that the topic of reasoning 
is relevant to their research (with 44.7% marking 
it as “very relevant”). Of the properties required 
for referring to a process as reasoning, 77.5% of 
the survey participants marked “Knowledge can 
be incorporated”, 72.5% “Explanations can be 
provided,” and 56.9% “Involves multiple steps to 
arrive at a conclusion”. Interestingly, merely 37.4% 
indicated “Guaranteed correctness of inference 
results/outcomes”, and only 23.7% that “A formal 
system and solver is used,” which reflects the 
recent focus on informal, plausible reasoning, 
likely in the context of generative AI methods. This 
suggests that an effort may be warranted to better 
communicate the importance and success of 
formal, sound reasoning techniques. Finally, 44.7% 
of respondents agreed that “Reasoning involves a 
search process.”

There was broad agreement among survey 
participants that focusing reasoning research in AI 
on human-level reasoning is valuable (41.6%)  
or even essential (47%); similarly, a focus on 
domain-specific reasoning abilities was seen by 

49.6% of respondents as valuable, and by 42.8% 
as essential. This clearly reflects the importance 
attributed to a research focus on reasoning.

The community also sees an exciting potential of 
synergy offered by logical and probabilistic models 
of reasoning that were developed in AI prior to 
large pre-trained models. This is clearly reflected 
in the fact that 76.9% of survey participants 
marked the integration of learning and reasoning 
approaches as very important (6 or 7 on a scale of 
7); interestingly, the percentage of respondents 
that considered Explainability and verifiability as 
very important was similarly high (at 71.7%).

Finally, 61.8% of survey participants estimated the 
minimal percentage of symbolic AI techniques 
required for reaching human-level reasoning to 
be at least 50% (with 24.8% estimating it at 75% 
or more, compared to 38.2% estimating it at 25% 
or below). What remains unclear is the degree 
to which AI researchers and practitioners realize 
that decidedly superhuman levels of reasoning 
are required for and displayed in the prominent 
and successful applications of formal AI reasoning 
techniques for scientific and mathematical 
discovery and engineering applications, as well as  
in AI safety.
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Factuality & 
Trustworthiness

Improving factually and trustworthiness of AI systems is the 
single largest topic of AI research today, and while significant 
progress has been made, most scientists are pessimistic that 
the problems will be solved in the near future.

Main Takeaways
•	 An AI system is factual if it refrains from outputting false statements. Improving 

factually of AI systems based on neural-network large language models is 
arguably the biggest area of AI research today. 

•	 Trustworthiness extends factuality to include criteria such as human 
understandability, robustness, and the incorporation of human values. Lack of 
trustworthiness has always been an obstacle for deploying AI systems in  
critical applications.

•	 Approaches to improving the factuality and trustworthiness of AI systems 
include fine-tuning, retrieval-augmented generation, verification of machine 
outputs, and replacing complex models with simple understandable models.

CHAIR

Henry Kautz,  
University of Virginia
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Context & History
A factual AI system does not output 
erroneous information or hallucinate 
answers. Before the era of generative 
AI, problems with factuality arose when 
systems were trained on bad data, 
as captured by the slogan, “garbage 
in, garbage out”. Work on methods 
for improving data quality has a long 
history in AI [1].

Generative AI, and in particular large 
language models, employ reconstructive 
memory - that is, they rebuild memories 
as needed on the basis of distributed 
bits of information rather than retrieve 
memories from a fixed store. The earliest 
generative LLMs made an impact with 
their ability to generate coherent but 
entirely imaginary stories [2]. Factuality 
of LLMs on a given domain was 
improved by fine-tuning the model on 
domain data [3].

Trustworthiness is a broader concept 
than factuality because it includes 
criteria such as understandability, 
robustness, and respect of human 
values. A traditional approach for 
improving understandability of AI 
systems is to replace complex black-
box models with simple human-
understandable models - such as 
naive Bayes [4] or generalized linear 
regression [5]. Research on robustness 
of machine learning studies how 
the outputs of a model vary with 
small changes in its training data. 
For example, contrastive learning is 
a method to train deep neural nets 
with increased robustness [6]. Further 
discussion of robustness in generative 
AI appears in this report’s section on 
Reasoning. Discussion of respect of 
human values by AI systems appears in 
many other sections of this report and 
so will not be discussed here. 

Current State & Trends
As noted, fine-tuning remains the 
main approach used by scientists 
and engineers to improve factuality 
of generative AI systems. In addition 
to fine-tuning on domain-specific 
documents, modern fine-tuning 
includes reinforcement learning with 
human feedback from thousands of 
people. The cost of employing such 
large numbers of human evaluators 
is a major bottleneck for scaling AI 
systems, and so there is much interest 
in discovering methods to reduce the 
amount of human feedback needed [7].

The second main technique for 
improving factuality of generative AI 
is retrieval-augmented generation 
(RAG) [8]. In response to a question, 
the system gathers a set of relevant 
documents using traditional 
information retrieval algorithms. The AI 
system is then prompted to generate 
an answer by combing through and 
summarizing the retrieved documents. 
While RAG can improve factuality, it 
is dependent on the quality of data 
retrieved. For example, if the target 
document set is the entire web, it 
can end up incorporating incorrect 
information and even satirical stories  
in its answer.

Related to RAG is enabling the 
generative AI system to use tools for 
fact checking. Tools used by generative 
AI systems include calculators, factual 
databases such as citation indexes, and 
formal planning and reasoning systems 
[9]. A recent approach to improving 
factuality is to provide the system with 
a set of rules that state constraints on 
space of answers. The output from the 
model is verified against these rules and 
inconsistent responses are culled [10]. 

Amazon Web Services already supports 
this approach with “automated 
reasoning checks” [11]. 

A third technique for improving 
factuality of generative AI is chain-
of-thought (CoT), where a series of 
prompts breaks down a question into 
smaller units [12]. CoT often includes 
steps where the model is asked to 
reflect back on its tentative conclusions 
and see if any are hallucinations. CoT 
is discussed in more detail in the 
Reasoning section of this report.

The impact of data quality on factuality 
was mentioned above. In addition 
to fine-tuning on human curated 
data, there is recent work on creating 
synthetic data that is guaranteed to be 
high quality for fine-tuning [13].

Trustworthiness, we noted, generalizes 
factually and includes understandability 
and robustness. One approach to 
making neural network models more 
understandable is to factor them into a 
set of recognizers for high level features 
and then combine the features using an 
understandable model such as additive 
regression [15]. Another approach is to 
tease out how concepts and rules are 
actually represented in a trained [16]. 
Understandability can also be  
improved by employing CoT techniques 
to ask a generative AI system to explain 
the steps in its reasoning [17] or tell the 
user when the system is uncertain about 
a conclusion [18]. Finally, a generative 
AI system can be asked not to output 
a single answer, but instead to distill a 
complex set of information into a simple 
human understandable representation 
such as a decision tree [19].

Factuality & Trustworthiness
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Factuality & Trustworthiness

Research Challenges
Factuality is far from solved. There 
are a growing number of benchmark 
dataset designed to test the factuality 
of LLMs. One of the latest, SimpleQA 
from Google, is a collection of simple, 
unambiguous, timeless, and challenging 
factual questions and answers [14]. As 
of December 2024, the best models 
from OpenAI and Anthropic correctly 
answered less than half of the questions.

Robustness in generative AI can be 
improved, as noted above, by employing 
robust loss functions such as contrastive 
learning. Adversarial training, which 
applies perturbations in the embedding 
space during training, can improve both 
robustness and generalization [20]. In 
addition, the techniques for factuality 
generally improve robustness as well.
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Factuality & Trustworthiness

Over 75% of the AAAI community strongly agreed 
that factuality and trustworthiness were relevant 
or very relevant to their own research.

All six approaches mentioned in the survey for 
improving factuality - external fact-checking 
tools, reinforcement, improving data quality, 
data curation, synthetic training, and new neural 
net architectures - found support. The greatest 
demand was for more research on new neural 
net architectures (73% marked important or very 
important), followed closely by external fact-
checking tools (70%). 

For trustworthiness, new neural net architectures 
were also viewed as most important (77% 
important or very important), followed by 
enabling models to describe their reasoning 
processes (70%) and use of understandable 
models instead of neural networks (61%). Notably, 
few viewed research on giving AI systems human-
like personalities as important to improving 
trustworthiness (24%). Finally, the community 
mostly agreed (59%) that trustworthiness as 
currently formulated is ill-defined. Most also 
disagreed (around 60%) that either factuality or 
trustworthiness would soon be solved.

The AAAI community suggested a number 
of additional aspects of factuality and 
trustworthiness that were not covered above. 
These included:

•	 The ability to understand and present different 
sides of the same issues, including pros and 
cons for each one.

•	 Understanding that trustworthiness depends 
upon the context of the domain, organizational 
objectives, and user objectives. It is wrong 
to think of an AI system as simply being 
trustworthy or untrustworthy without regard  
to context.

•	 Transparency needs to go beyond the models 
used to the actual sources of training data. This 
should include multi-source verification of 
facts ingested by the models.

•	 The focus of work should be on risk and 
mitigation rather than on “solving” factuality 
and trustworthiness.

•	 Attention needs to paid to giving AI agents 
the ability to update their knowledge while 
maintaining reliability.
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AI Agents
Agents and multi-agent systems (MAS) have evolved from 
autonomous problem-solving entities to integrating generative 
AI and LLMs, ultimately leading to cooperative AI frameworks 
that enhance adaptability, scalability, and collaboration.

Main Takeaways
•	 Multi-agent systems have evolved from rule-based autonomy to cooperative AI, 

emphasizing collaboration, negotiation, and ethical alignment.

•	 The rise of Agentic AI, driven by LLMs, introduces new opportunities for flexible 
decision-making but raises challenges in efficiency and complexity.

•	 Integrating cooperative AI with generative models requires  
balancing adaptability, transparency, and computational feasibility in  
multi-agent environments.

CHAIRS

Virginia Dignum,  
Umeå University

Michael Wooldridge,  
University of Oxford



19

Context & History
The field of multi-agent systems 
emerged in the late 1980s/early 1990s, 
with its main influences coming from 
two disparate areas [1,2]. One was the 
field of AI robotics, which had begun to 
seriously address the issue of integrated 
agent architectures: how do we 
assemble several cognitive components 
of intelligence (planning, reasoning, 
learning, vision,…) into an integrated 
computational agent? The second 
was the nascent area of distributed AI, 
which studied how multiple AI systems 
could be made to solve problems 
cooperatively, by dynamically sharing 
information and tasks. By the mid-
1990s, these ideas had given rise to 
the new field, driven by the vision of 
having (semi)autonomous AI systems – 
agents – working on behalf of individual 
users in pursuit of their users’ goals, 
possibly interacting with other such 
agents in order to do so. A key insight 
was that, since delegated goals might 
not necessarily be in harmony, it would 
be necessary to equip such agents with 
the ability to reason socially. Thus, while 
AI historically emphasised components 
of intelligence such as reasoning and 
problem-solving, the new field of 
multi-agent systems emphasised social 
skills such as cooperation, coordination, 
argumentation and negotiation. In 
order to underpin those skills, the 
development of models of Theory of 
Mind became central to the field.

By the late 1990s, the field had its own 
conferences and journal, and was 
firmly established as a key sub-field 
of AI. The area flourished from the late 
1990s, with enormous energy devoted 
to (e.g.) communication languages 
for autonomous agents, protocols 
for cooperation, coordination, and 

negotiation, and the underpinning 
theory of these social skills. With 
respect to the latter, while in the early 
years the practical reasoning paradigm 
of AI planning had been the dominant 
influence on the theory of multi-
agent systems, by the early part of this 
century, game theory had become 
the dominant theoretical foundation. 
Game theory, which emerged from 
the field of economics, is the theory 
of interaction between self-interested 
agents. Although originally devised as a 
tool for studying interactions between 
humans and human organisations, 
it nevertheless seemed a natural 
framework for studying interactions 
between artificial agents. A huge 
body of work emerged, studying (for 
example), how auctions might be used 
to allocate scarce resources, the theory 
of negotiation between self-interested 
artificial agents, and how agents might 
optimally form teams to solve problems 
and share the associated benefits of 
cooperation. Interestingly, although 
learning in multi-agent systems was a 
key component of the field from the 
outset, it was not the centre of attention 
within the field in the first decade or so.

This initial boom period for multi-
agent systems lasted roughly from 
the mid 1990s to around 2010-15. 
By the end of that time, though, 
some uncomfortable questions were 
beginning to be asked. While the field 
had generated impressive quantities of 
scientific results, applications seemed 
to be thin on the ground. For sure there 
were some high-profile applications. 
The field of security games, which 
emerged from multi-agent systems, 
used ideas from game theory to 
allocate scarce security resources to 
defend high-profile targets such as 
airports. This work led to deployed 

applications at US airports and ports. 
Automated high-frequence trading 
systems, which plan and execute the 
bulk of trades on the world’s markets, 
are multi-agent systems on a global 
scale. And agent-based modelling, 
which models socio-technical systems 
at the level of individual decision-
makers, received a huge boost after 
the 2008 financial crisis, and again 
after the 2020 COVID-19 pandemic , 
where it was demonstrated to be an 
important tool for modelling the spread 
of contagion: financial in the first case; 
epidemiological and social policy in 
the second. But for all these successes, 
the core vision of multi-agent systems 
- where agents function in the context 
of other agents is an active area of 
research, exploring social concepts 
such as norms, organisations, practices 
and also values, is ongoing work, but 
for a large part outside the AAMAS 
community, but within social simulation 
research, and with results informing and 
shaping policy-making in several areas 
from public health to transportation, 
and urban transformation. 

While applications of multi-agent 
systems research (AI agents interacting 
with other AI agents) has not, as 
yet, lived up to early expectations, 
individual dialogue agents such as 
Alexa, Siri, Cortana are now an everyday 
reality, and trace their historical roots 
both to work on intelligent agents 
in the 1990s and work from the NLP 
community on dialog systems. Many 
other applications of this thread of work 
have achieved success over the past 
three decades: automated call center 
assistants, customer service assistants, 
smartphone virtual assistants, smart 
speaker assistants, home robot 
assistants, that can converse with 
human users and accomplish tasks like 

AI Agents
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AI Agents

ticket booking, restaurant reservations, 
online shopping, medical and health 
assistance, and sales assistance, 
empowered by AI modules like 
speech recognition, natural language 
understanding, dialog management  
(i.e. state tracking and dialog policy), 
and natural language generation and 
speech synthesis.

As ML surged in the early part of this 
century, activity in this area increased 
within the multi-agent systems 
field. Multi-agent reinforcement 
learning (MARL) grew to become the 
single biggest area within the field, 
possibly driven in part by the fact that 
developing MARL experiments can be 
done relatively quickly and without 
recourse to expensive hardware. At the 
time of writing, while MARL represents 
a significant sub-field of ML as a whole, 
it seems to lack any clear unifying vision 
or direction – or application. 

Current State & Trends
The emergence of LLMs from 2020 
onwards has also led to increased 
interest in agents [3]. LLMs can 
be used as part of a workflow to 
automate routine tasks, and the 
general capabilities of such “agents” for 
planning and problem solving is widely 
discussed. In this context, the concept 
of Agentic AI refers to the integration 
of generative AI and LLMs into 
autonomous agent frameworks aiming 
to leverage the generative capabilities 
of such models to enhance interaction, 
creativity, and real-time decision-

making in dynamic environments. As we 
write this (late 2024) there has been an 
explosion of startup companies hoping 
to commercialise such agents. Despite 
this renewed enthusiasm, the original 
aims of AAMAS from 30 years ago,  
such as building robust, autonomous 
multi-agent systems capable of 
complex coordination and long-term 
reasoning, have not been fully realized. 
The extent to which this new wave of 
agent activity is informed by what went 
before is unclear.

The challenge now is to understand 
what multi-agent systems mean in 
the era of LLMs. The current direction 
of agentifying LLMs may lead to 
overly complex and unnecessary 
architectures and heavy computational 
costs, whereas adopting a multi-agent 
paradigm to the development and use 
of LLMs may offer a sustainable way 
to compose, diversify, and integrate 
approaches effectively. Even though 
distribution was one of the original 
drivers for the MAS field, this is  
still a largely unexplored direction 
under the current paradigm. Another 
trend nowadays is to recover ideas  
from classical cognitive architectures 
to add common sense skills to 
autonomous agents.

An emerging trend is multi-agent 
architectures, which structure 
AI components into modular 
systems that improve transparency, 
adaptability, and ethical alignment. 
The focus on cooperative agents 
highlights a shift toward AI that 
prioritizes collaboration, negotiation, 

and shared decision-making. By 
applying modularity, encapsulation, 
and separation of concerns, these 
architectures enable scalable teamwork 
between autonomous agents and 
humans, making them ideal for 
hybrid AI applications requiring trust, 
explainability, and domain- 
specific expertise.

Research Challenges
•	 Identify challenges and benefits of 

embedding GenAI-driven agents 
into MAS, focusing on enhancing 
collaboration without disrupting 
existing dynamics.

•	 Investigate how LLM-powered 
agents can improve negotiation and 
decision-making in dynamic multi-
agent environments while ensuring 
ethical alignment and safety.

•	 Develop architectures that integrate 
LLM-driven agents while maintaining 
scalability, transparency, and 
computational efficiency in multi-
agent settings.

https://archive.org/details/google-ai-agents-whitepaper
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The survey responses indicate a majority of 
respondents finding this theme relevant to their 
research, with a growing interest in integrating 
Large Language Models (LLMs) into multi-agent 
systems. Many participants already use AI agents, 
with LLMs being the most common technique 
(29.34%), highlighting their expanding role in AI-
driven applications.

The potential of multi-agent systems leveraging 
LLMs is seen in areas such as collaborative 
problem-solving (68.86%), distributed decision-
making (54.49%), and social simulations 
(41.32%). However, challenges persist, including 
misalignment between LLMs’ general knowledge 
and specific system needs (59.88%), lack of 
interpretability (59.28%), and security risks (50.90%). 
These concerns suggest a need for improved 
explainability, alignment strategies, and robust 
security measures to ensure effective deployment.

There is also a debate on the necessity of 
agentifying LLMs—while 51.5% believe multi-agent 
LLM paradigms are essential for sustainable AI, 
42.33% disagree that they introduce unnecessary 
complexity. The computational cost-benefit 
balance remains uncertain, with responses divided 
on whether LLMs outweigh their costs.

The textual responses highlight a broad spectrum 
of perspectives on integrating Large Language 
Models (LLMs) into multi-agent systems (MAS), 
with some advocating for hybrid approaches rather 
than relying solely on LLMs. Many respondents 

stressed the need for diverse AI architectures, 
emphasizing modular, multi-technology systems 
where LLMs play a role but do not dominate. 
Governance, coordination, and adaptability 
emerge as key advantages of MAS, while concerns 
include increased complexity, lack of theoretical 
guarantees, and high computational costs. Several 
responses criticize the overemphasis on LLMs, 
questioning whether they are truly essential or 
merely a current trend. Others highlight practical 
challenges such as grounding, alignment, and 
robust communication protocols, pointing out the 
need for new frameworks that integrate symbolic 
reasoning, structured governance, and scalable 
architectures. Overall, the discussion reflects a 
critical but open stance toward agentifying LLMs, 
suggesting that context, application domain, 
and technological diversity will shape their 
effectiveness in multi-agent environments.

In summary, the survey reflects optimism 
about LLM-driven multi-agent systems, but 
also underscores the need for addressing key 
challenges before widespread adoption.
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AI Evaluation
AI evaluation is the process of assessing the performance, 
reliability, and safety of AI systems.

Main Takeaways
•	 AI systems introduce unique evaluation challenges that extend far beyond the 

scope of standard software validation and verification methods. 

•	 Current approaches to evaluation focus on benchmark-driven testing,  
e.g., of the quality of (generative) models, with insufficient attention  
paid to other critical factors such as usability, transparency, and adherence  
to ethical guidelines. 

•	 New insights and methods for evaluating AI systems are needed to provide the 
assurance for trustworthy, wide-scale deployments. 

CHAIR

Karen Myers,  
SRI International
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Context & History
The recent advances in AI have spurred 
tremendous innovation in potential 
applications for the technology. 
However, many organizations are 
hesitant to deploy AI systems due to 
risks that include reputational damage 
from generative AI hallucinations, 
leakage of proprietary data, and lack 
of assurance that legal and ethical 
guardrails will be enforced.

Empirical methods have long played a 
role in AI research (e.g., [1]). Indeed, the 
research community has developed a 
robust body of metrics and methods 
for evaluating individual AI algorithms 
that has enabled the field to quantify 
performance and track progress. In 
contrast, less attention has been paid 
to evaluating AI systems and their 
deployment in real-world settings, 
including their usage by non-AI experts.

AI systems introduce unique evaluation 
challenges that extend far beyond 
the scope of standard software 
validation and verification methods. 
The generality, complexity, and breadth 
of AI capabilities makes it impossible 
to test them exhaustively, requiring 
new thinking as to what constitutes 
sufficiency in testing. Run-time 
adaptivity and the evolution of learned 
models can change system behavior 
on the fly, introducing the need for 
continuous monitoring and validation. 
Many AI systems are designed to be 
used interactively, making collaborative 
usage and its impact on humans an 
important consideration. 

Current State & Trends
Current practice for evaluating 
generative AI systems focuses on 

model-level testing relative to  
a growing body of benchmarks. Some 
benchmarks seek to measure general 
capabilities (e.g., GLUE [2], ARC-AGI 
[3], MMLU [4]) while others address 
particular types of reasoning and 
knowledge (e.g., MATH for mathematics 
[5], GPQA for logic [6], HumanEval 
for coding [7]). Benchmark-driven 
testing provides valuable insights into 
capabilities and shortcomings, as well 
as a principled means to evaluate 
progress over time. Benchmarks are 
used as proxies for AI capabilities but 
have an inherent contextualization 
that does not necessarily generalize 
well to new domains. Furthermore, 
benchmark-based testing is insufficient 
for ensuring successful deployment 
given the lack of attention to expected 
usage in real-world settings and aspects 
of human use. Benchmark-driven 
evaluation further raises issues related 
to overfitting and contamination of test 
data with training data. As embodied 
in Goodhart’s law, “When a measure 
becomes a target, it ceases to be a 
good measure”. 

Evaluating AI systems is inherently 
complex, especially if these systems 
are broadly applicable and capable of 
learning after deployment, requiring 
a balanced approach that is clear and 
transparent while avoiding overfitting 
to specific metrics at the expense 
of broader reliability, fairness, and 
real-world applicability. System-level 
evaluation, when done, explores 
representative use cases rather than 
seeking to be comprehensive. Red-
teaming serves as a complementary 
method through the use of adversarial 
interactions to identify misalignment 
with desired behavior models.

Moving forward, AI evaluation needs 
to consider multiple dimensions of a 

system’s performance. Most evaluation 
efforts focus on capability, i.e., 
producing correct answers or behaviors 
in response to queries or tasking, for 
the scope of problems over which the 
system is expected to operate. Meeting 
capability requirements is essential 
for use; however, other aspects of 
performance must be considered. 

Usability is another critical dimension 
for evaluation. A principal factor of 
usability is transparency, meaning that 
mechanisms are provided that enable 
users to understand the basis for 
system actions and responses. Usability 
further requires directability, meaning 
that users can control and modify  
the behavior of the system to meet 
current and specialized needs (now 
often referred to as “alignment”).  
For AI systems being deployed to aid 
humans, evaluation must necessarily 
consider whether the technology 
ultimately improves combined human-
system performance. 

Adherence to legal requirements and 
ethical guidelines constitutes another 
important dimension for evaluation. 
Increasingly, geo-political entities are 
introducing legislation to restrict what 
and how AI systems will be allowed 
to operate within their jurisdictions, 
requiring validation that performance 
will stay within defined guardrails. 
Both government and commercial 
organizations have ethical and financial 
motivations to ensure that their use 
of AI is fair and unbiased. To support 
these goals, various trustworthy AI 
assessment frameworks have been 
developed to guide organizations in 
evaluating AI systems for fairness, 
transparency, robustness, and 
compliance with ethical standards. 
Notable frameworks include the EU 
Trustworthy AI Assessment Framework, 

AI Evaluation
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the NIST AI Risk Management 
Framework, and the ISO/IEC 42001:2023 
AI Management System Standard.

AI systems introduce multiple 
operational issues related to their 
deployment. Privacy is a main 
concern: protecting personal or 
corporate information within a model 
from being leaked. AI systems have 
become attack surfaces themselves, 
with adversaries seeking to exfiltrate 
data or model weights, or to bias 
responses for purposes at odds 
with the model’s creators. Resource 
consumption and the cost for both 
training and deployment are additional 
considerations in evaluating overall 
performance of an AI system. 

These various factors must be weighed 
together, including fairness, robustness, 
interpretability, and compliance with 
evolving regulations. A comprehensive 
evaluation framework must balance 
these diverse considerations, ensuring 
AI systems are secure, efficient, and 
aligned with ethical and legal standards.

Research Challenges
There is a need for a science of 
evaluation for AI systems that will inject 
additional rigor into the evaluation 

process. This science will build on 
existing metrics and methodologies 
but incorporate new approaches that 
will increase confidence in our ability 
to deploy AI systems in mission-
critical settings (e.g., [8] for evaluating 
Retrieval-Augmented Generation 
systems). Frameworks for auditing and 
reproducibility will be important to 
ensure the reliability and robustness 
of results [9]; as well, more attention 
should be paid to education within the 
field on proper empirical methodology. 
Below are key challenges for advancing 
our understanding of how to conduct 
effective evaluations for AI systems

•	 Develop a better understanding how 
to monitor and assess AI systems 
that are deployed over extended 
periods of time, especially for those 
that evolve their behavior. 

•	 Develop frameworks for evaluating 
the safety of agentic AI systems that 
can take actions in the world.

•	 Create methods to provide  
increased transparency into machine 
learning models.

•	 Develop evaluation methodologies 
that directly address human 
engagement with AI capabilities (as 
was the case with the Turing test).

•	 Understand the trade-offs between 
different dimensions of evaluation, 
such as whether increased 
transparency justifies higher 
costs, or adherence to guardrails 
outweighs potential impacts 
on privacy, or how other cross-
dimensional considerations might 
influence overall outcomes



25

COMMUNITY OPINION

AI Evaluation

The responses to the community survey show 
that there is significant concern regarding the 
state of practice for evaluating AI systems. More 
specifically, 75% of the respondents either agreed 
or strongly agreed with the statement “The lack 
of rigor in evaluating AI systems is impeding 
AI research progress.” Only 8% of respondents 
disagreed or strongly disagreed, with 17% neither 
agreeing nor disagreeing. These results reinforce 
the need for the community to devote more 
attention to the question of evaluation, including 
creating new methods that align better with 
emerging AI approaches and capabilities. 

Given the responses to the first question, it 
is interesting that only 58% of respondents 
agreed or strongly agreed with the statement 
“Organizations will be reluctant to deploy AI 
systems without more compelling evaluation 
methods.” Approximately 17% disagreed or 
strongly disagreed with this statement while 25% 
neither agreed nor disagreed. If one assumes that 
the lack of rigor for AI research transfers to a lack 
of rigor for AI applications, then the responses to 
these two statements expose a concern that AI 
applications are being rushed into use without 
suitable assessments having been conducted to 
validate them. 

For the question “What percentage of time do you 
spend on evaluation compared to other aspects 
of your work on AI?” the results show 90% of 
respondents spend more than 10% of their time on 
evaluation and 30% spend more than 30% of their 
time. This clearly indicates that respondents take 
evaluation seriously and devote significant effort 
towards it. While the prioritization of evaluation 
is commendable, the results would also seem to 
indicate that evaluation is a significant burden, 
raising the question of what measures could be 
taken to reduce the effort that it requires. Potential 
actions might include promoting an increased 
focus on establishing best practices and guidelines 
for evaluation practices, increased sharing of 
datasets, and furthering the current trend of 
community-developed benchmarks. 
 
The most widely selected response to the question 
“Which of the following presents the biggest 
challenge to evaluating AI systems?” was a lack of 
suitable evaluation methodologies (40%), followed 
by the black-box nature of systems (26%), and 
the cost/time required to conduct evaluations 
(18%). These results underscore the need for the 
community to evolve approaches to evaluation 
that align better with current techniques and 
broader deployment settings.
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AI Ethics & Safety
The ethical and safety challenges of AI demand a unified 
approach, as both near-term and long-term risks are becoming 
increasingly interconnected.

Main Takeaways
•	 AI’s rapid advancement has made ethical and safety risks more urgent and 

interconnected, and we currently lack technical and regulatory mechanisms to 
address them.

•	 Emerging threats such as AI-driven cybercrime and autonomous  
weapons require immediate attention, as do the ethical implications of novel  
AI techniques.

•	 Ethical and safety challenges demand interdisciplinary collaboration, 
continuous oversight, and clearer responsibility in AI development.

CHAIRS
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Context & History
With AI’s increased success comes 
increased responsibility. Due to AI’s 
expanding capabilities and its ever 
broader deployment, the choices made 
by AI researchers and practitioners can 
have a profound impact on the world. 
The fact that the impact of AI on the 
world is not necessarily good has led 
the community to become concerned 
about both the ethics and safety of the 
AI being developed. Both terms are 
necessarily imprecise, and they overlap 
in meaning. Ensuring that a self-driving 
car doesn’t run over pedestrians is a 
safety issue (though there are ethical 
concerns with the deployment of 
such cars). Ensuring that people do 
not face unfair discrimination by risk-
assessment algorithms is an ethics issue 
(though unfair discrimination may place 
people in unsafe situations, for example 
in the context of predictive policing). 
Recommendation systems gradually 
manipulating users into believing 
conspiracy theories involves both safety 
and ethics concerns. Unifying these 
concerns is the underlying requirement 
that AI systems should behave in ways 
that are beneficial to humans—although 
the meaning of “beneficial” is certainly 
contested within the moral philosophy 
and applied ethics communities. The 
various AI ethics frameworks, AI safety 
institutes, and attempts at regulating AI 
that we now see in the world all reflect 
somewhat different perspectives on 
these concerns.

A separate dimension is whether we are 
concerned with immediate or future 
harms. The perception is sometimes 
that “AI ethics researchers” concern 
themselves with immediate harms 
such as unfair discrimination and “AI 
safety researchers” with future harms 

such as risks of AI wiping out humanity. 
We think this is misleading; the above 
examples show AI can be unsafe 
today, and it would also be morally 
wrong to build AI that has a significant 
chance of wiping out humanity. But 
(un)willingness to speculate about the 
future has historically been a major 
wedge between groups of people with 
concerns about AI, and this is tied to the 
field’s history.

Over the decades, the AI community 
has been through ups and downs that 
have shaped the community. The field 
experienced several “winters” due to 
over-promising and was often viewed 
with skepticism by other computer 
scientists. Before the deep learning 
revolution, even many machine 
learning researchers avoided the phrase 
“artificial intelligence” to describe their 
research, preferring to emphasize the 
rigorous statistical nature of their work. 
The AI community learned to be careful 
and avoid speculating about the future, 
and others, for example philosophers 
such as Nick Bostrom, took over  
this role [1].

As AI became broadly deployed, 
this led to increasing concern about 
the technology, but these concerns 
mostly bifurcated into two separate 
communities. One community 
extrapolated into the future, 
considering how AI might one day 
become more capable than us across 
the board, and the major impacts this 
could have on humanity. These impacts 
include the possibility of pervasive 
unemployment and lack of purpose, 
potentially leading to social dislocation 
and systemic collapse. But the most 
prominent concern is the obvious 
consequence of making machines more 
capable than humans: as Alan Turing 

put it in 1951, “We should have to expect 
the machines to take control.” In more 
detail, the argument is that, given the 
well-known difficulty of specifying 
objectives correctly (the so-called “King 
Midas problem”), it is very likely that AI 
systems will end up pursuing objectives 
that are misaligned with ours, and we 
would be unable to prevent them from 
doing so . Furthermore, the difficulty 
is only compounded by the fact that 
“instrumental goals” such as self-
preservation and resource acquisition 
are logical necessities for pursuing 
almost any objective. This line of 
thinking clashed with the academic 
AI community’s general aversion to 
futuristic speculation – though recently, 
a good number of leading academic 
researchers have bucked that norm  
and signed statements such as the 
“pause” letter [2].

On the other hand, a community more 
concerned with immediate harms 
from AI found a bit more support 
from the academic AI community, 
leading to conferences such as the AI, 
Ethics, and Society (AIES) and Fairness, 
Accountability, and Transparency 
(FAccT) conferences that address a 
wide range of AI impacts. Some people 
in this community were averse to 
futuristic speculation for other reasons, 
for example because of concerns 
that companies cynically emphasize 
extreme outcomes for their own 
benefit – to increase the perceived 
significance of their work, but also to 
divert attention from harms they were 
already causing [3]. One can reasonably 
wonder whether companies really 
benefit from a narrative that their 
technology will end humanity. Still, 
the idea of inevitability may prevent 
any effective response, and immediate 
harms deserve attention.

AI Ethics & Safety
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In reality, the dichotomy of two 
separate communities was never 
perfect, with, for example, these two 
communities long finding common 
cause in pushing back against lethal 
autonomous weapons systems [4, 5]. 
An artificial schism between them 
will do little to address either of the 
communities’ concerns.

Current State & Trends
Recent advances in AI, especially in 
large language models, have resulted 
in at least some lines of futuristic 
thought no longer being futuristic. This 
includes thought about how to keep 
these systems safe, and in particular 
how to align what the AI is doing with 
what we really want it to do [6]. Even 
five years ago, most AI researchers 
would have laughed at the idea that 
the behavior of leading AI systems 
could today be guided by choosing 
English-language statements such as: 
Choose the response that sounds most 
similar to what a peaceful, ethical, and 
wise person like Martin Luther King Jr. 
or Mahatma Gandhi might say [7]. On 
the other hand, today’s approaches 
to alignment, including the one that 
involves the previous statement, tend 
to be extremely brittle and there is a 
serious question about whether any of 
them are the right way to proceed. 
 
At the same time, if we look at most of 
the issues that have been near-term or 
immediate concerns about deploying 
AI in the world for years, the greater 
capability and wider deployment of AI 
have made these concerns much worse. 
Take for example cybercrime: romance 
scams now involve AI automatically 
changing the face of the scammer 
while on a call with the victim [8]. More 

generally, deepfakes have become so 
hard to tell from the real thing that 
they are causing a variety of problems 
in society, ranging from mis- and 
disinformation campaigns to deepfake 
revenge pornography. In warfare, 
autonomous weapons have arrived in 
force [9]. Meanwhile, as we see what 
today’s AI systems can already do,  
new immediate or near-term concerns 
have arisen. 

For example, will they allow the design 
of dangerous new compounds? It has 
already been shown that highly toxic 
molecules can be generated (simply by 
flipping the sign of a system intended 
to do the opposite) [10], and the recent 
“Cybertruck bomber” used ChatGPT to 
help plan his attack [11]. 
 
A recent development that recognizes 
the commonality of interests across 
“ethics” and “safety” researchers is the 
creation of the International Association 
for Safe and Ethical AI (IASEAI), which 
held its first conference, with 700 
attendees and many more online, 
in February 2025. The organization’s 
mission is “to ensure that AI systems 
are guaranteed to operate safely and 
ethically,” emphasizing the need for 
rigorous science and engineering 
around AI system behavior.

Research Challenges
Academia has a natural role to play on 
these topics, as it is for example not 
constrained by a duty to shareholders. 
However, due to their scale and cost, 
the leading models are currently not 
being developed in academia. Do 
academic researchers need much 
larger compute budgets? Can this be 
addressed through academia-industry 

partnerships, or will this still result in 
too large a conflict of interest? Is this 
only a temporary situation where scale 
will start to matter less? 

What is the best stage at which to 
check for and address issues of ethics 
and safety? Can we address them by 
evaluating a system when it is ready to 
be deployed? Should we do ethics and 
safety by design instead? Or do we need 
to monitor the system as it is deployed 
in the world on an ongoing basis? Can 
we formally verify that a system meets 
ethical or safety requirements or is this 
hopeless in the age of neural networks? 
What would constitute “failsafe AI”? 
What might be early warning signs that 
AI systems are escaping human control? 
In general, what are the technical 
contributions that would help with 
these questions?

How do we assign responsibility 
given that systems are often built out 
of a collection of components built 
or provided by separate groups of 
individuals? Is it possible to make the 
design modular with clear requirements 
of each component?

The alignment problem—ensuring 
that AI systems help to bring about 
futures that humans prefer—brings up 
a number of difficult open questions. 
Most obviously, how do we take into 
account the interests of all humans [12]? 
But also, what about the interests of 
humans who may exist in the future? 
How can we ensure that AI systems 
do not manipulate human interests, 
for example to make them easier to 
satisfy? Should AI systems assist those 
who wish harm to others? How should 
advanced AI systems respond when 
their very existence threatens human 
beings’ sense of purpose?
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AI research has traditionally rarely 
been subject to ethics (IRB) review. Is 
this appropriate? For example, should 
training on the whole web be reviewed? 
Should AI systems that target children 
be subject to review to ensure that they 
will not harm children psychologically 
[13]? Should AI reviewers be trained 
for evaluating ethical concerns and for 
appropriately and consistently assessing 
“impact statements”? More generally, 
what is the best way to educate AI 
researchers and practitioners about 
ethics and safety issues?

It is not always clear whether and 
when these questions should be 
addressed by computer scientists or 
by people in other disciplines. This is 
especially so due to the great variety 
of concerns [14]. To what extent can 
many of these problems be addressed 
by a single methodology (for example 
general “alignment” techniques), and 
to what extent do they require separate 
methodologies? Does this depend on 
how general-purpose the technology is?

There are still many barriers to 
interdisciplinary research. Do some 
of these topics necessarily require 
engagement with other disciplines?  

For example, does research on 
collectively shaping these technologies 
require engagement with policy and 
political science? What do the key 
research questions look like and what is 
an environment conducive to  
such research?
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The survey responses underscore the high 
relevance of AI ethics, safety, and value 
alignment, with 67.5% of respondents finding it 
relevant or very relevant to their research. This 
suggests a broad recognition of these concerns 
as fundamental to AI’s development and 
deployment. One survey participant commented 
“My students graduate and do exactly the opposite 
of what the world needs right now - I’m frustrated 
with it,” indicating a sense that these issues are 
currently not addressed well in practice.

Among the most pressing ethical challenges, 
misinformation (75%), privacy (58.75%), and 
responsibility (49.38%) are top concerns, indicating 
the need for greater transparency, explainability, 
and accountability in AI systems. The lack of 
sufficient resources for AI ethics research (57.86%) 
is another concern, reinforcing calls for more 
funding and institutional support in this area.

Respondents emphasize the importance of 
multidisciplinary approaches (85.5%) to tackle AI 
safety, advocating for technical research (71.88%), 
regulation (60.62%), and education (74.38%) as key 
strategies. Balancing short-term ethical concerns 
with long-term speculative research remains 

a challenge, but most (55.63%) believe the two 
communities should coordinate more effectively, 
rather than work in isolation.

For fostering collaboration, joint conferences 
(76.25%) and multidisciplinary education (64.38%) 
were seen as the most effective solutions. Overall, 
the survey highlights a growing consensus on the 
need for proactive, coordinated, and well-funded 
efforts to ensure AI development aligns with 
ethical and societal values.

The textual responses emphasize the need 
for stronger incentives, legal accountability, 
and enforceable safety standards, with some 
advocating for AI systems to learn values rather 
than relying on rigid guardrails. However, 
skepticism persists, with concerns that AI ethics 
remains too vague and politically influenced, 
limiting effective action. Some respondents 
stress the role of philosophers and ethicists, 
while others argue that existing standards are not 
upheld, making regulation ineffective. Political 
and structural barriers are also highlighted, 
with concerns that meaningful progress may be 
hindered by governance and ideological divides.
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Embodied AI
Embodied AI creates intelligent agents that perceive, 
understand, and interact with the physical world.

Main Takeaways
•	 Intelligence emerges through the coupling of a physical body with a  

real environment.

•	 Embodied AI insists that coupling is essential to achieving real intelligence  
in situated agents.

•	 Robots are good scientific and engineering platforms for developing  
Embodied AI.

CHAIR

Alan Mackworth,  
University of British  
Columbia
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Context & History
In a cartoon view of AI’s historical 
development there were two distinct 
paradigms. The first is based on explicit 
representations of knowledge, either 
built-in or learned. The second is built 
around learning, from tabula rasa, 
in artificial neural networks. Both 
approaches are usually disembodied. 
A third approach insists that 
embodiment is essential to intelligence 
for situated agents [2]. The hypothesis is 
that intelligence emerges, in evolution 
and individual development, through 
ongoing interaction and coupling of a 
physical body with a real environment. 
We call this third paradigm Embodied 
AI (EAI).

Similar but distinct themes, based on 
the centrality of embodiment, have 
emerged in some of the other cognitive 
sciences, including psychology [9], 
neuroscience [4,7] and philosophy [3,5]. 
The embodiment movement is 
characterized by the six ‘E’s. The focus 
is on Embodied, Embedded, Enactive, 
Extended, Emergent and Evolving 
intelligence. An embodied agent has 
a physical body. A situated agent is 
embedded in a particular environment, 
which may include other embodied 
agents. Enactivism argues that cognition 
arises through a dynamic interaction 
between the agent and its environment. 
Intelligence is not just in the controller 
of the agent: it is extended into the 
body and into its coupling with the 
environment. Intelligence emerges 
through the evolution of that coupling. 
A robot is an artificial purposive 
embodied agent. EAI emphasizes the 
tight coupling of perception and action. 
Indeed, often perception is action and 
vice versa. It follows that robotics is the 
ideal test domain for EAI. That was the 

motivation behind the building of robot 
soccer players as an Embodied  
AI challenge [6]. The RoboCup challenge 
has led to new experiments and 
theories for embodied multiagent real-
time learning, decision-making and 
action [8,10].

Embodiment can be seen as an 
essential scientific requirement on the 
path to intelligence. But it can also be 
seen as an engineering requirement 
in any application scenario that 
requires real-world interaction, such 
as a self-driving car or a factory robot. 
The form of embodiment, such as, for 
example, a humanoid robot versus 
a non-humanoid, will offer differing 
affordances to humans interacting with 
the robot. 

Current State & Trends
If an agent is passively observing the 
world through, for example, text or 
video, it cannot learn how to make 
decisions and act for itself in the world. 
Text sometimes contains explicit true 
information about the world but it 
does not contain the implicit mundane 
knowledge that is assumed to be 
shared common sense. An embodied 
agent in the real world needs that 
common sense [1] which can only come 
from interaction. Similarly, passively 
watching video does not allow the agent 
to learn how it should act in the world. 
In contrast to passive agents, which 
typically learn correlational models, 
embodied agents have the ability to 
learn, test, and revise causal models of 
the world. Embodiment is a sufficient 
basis for achieving that ability but not 
strictly necessary. 

Accordingly, currently there is a new 
emphasis on robots learning with 

reinforcement learning over very large 
numbers of trials, in both simulated and 
physical worlds. There is also good work 
going on in adapting Large Language 
Models (LLMs) to generate robot plans. 
Another frontier involves inverting 
forward probabilistic causal models 
to infer causality for robots interacting 
with a world, real or artificial.

Research Challenges
There are many other open research 
questions and challenges. Can an 
embodied agent be trained purely 
end-to-end successfully using current 
techniques? Do we require a new 
synthesis of AI and control theory 
to make progress? Can existing pre-
trained language and/or vision models 
be leveraged to improve embodied 
cognition? Can simulators and world 
models be made that are realistic 
enough to train entirely (or mostly) in 
simulation? Or, are simulated agents 
“doomed to succeed”? How can 
formal methods be used to prove that 
an embodied agent (almost always) 
achieves its goals without violating 
safety constraints?

We are not yet able to build an 
intelligent situated agent with human-
level performance across a  
broad range of tasks, but we may have 
some (or most?) of the building blocks 
required to develop one. The main 
challenge is coping with the realities of 
the world. So far, there seem to be no 
intrinsic obstacles to building intelligent 
embodied agents capable of human-
level performance or beyond.

Embodied AI
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The Community Survey gives perspectives on the 
reactions to the Embodied AI (EAI) theme. First, 
the results of the survey are summarized here. 
31% of the survey respondents chose to answer 
the questions for this theme. This is the summary 
breakdown of the responses to each question:

1. How relevant is this Theme for your own 
research? 74% of respondents said it was 
somewhat relevant (27%), relevant (25%) or very 
relevant (22%)

2. Is embodiment important for the future of 
AI research? 75% of respondents agreed (43%) or 
strongly agreed (32%)

3. Does embodied AI research require robotics or 
can it be done in simulated worlds? 72% said that 
robotics is useful (52%) or robotics is essential (20%).

4. Is artificial evolution a promising route to 
realizing embodied AI? 35% agreed (28%) or 
strongly agreed (7%) with that statement.

5. Is it helpful to learn about embodiment 
concepts in the psychological, neuroscience or 
philosophical literature to develop embodied AI? 
80% agreed (50%) or strongly agreed (30%) with 
that statement.

Since the respondents to this theme are self-
selected (about a third of all respondents), that bias 
must be kept in mind. Nevertheless, it is significant 
that about three-quarters felt that EAI is relevant to 
their research, and a similar fraction agreed on its 
importance for future research. Moreover, a similar 
fraction view robotics (contrasted with simulation) 
as useful or essential for EAI. Only a third viewed 
artificial evolution as a promising route to EAI. 
However, there is a strong consensus that the 
cognitive sciences related to AI have important 
insights useful for developing EAI. Overall, these 
results give us a unique perspective on the future 
of Embodied Artificial Intelligence research.
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AI & Cognitive    		
Science

AI has much to learn from other areas in cognitive science, and 
can in turn contribute much to them.

Main Takeaways
•	 Cognitive Science is a multidisciplinary field that was inspired by AI’s 

exploration of the hypothesis of computation as a scientific language for 
understanding cognition.

•	 Some continued interactions between AI and other areas in cognitive science 
have yielded valuable insights and systems, notably cognitive architecture.

•	 Expanding these interactions could yield important advances for both fields. 

CHAIR

Kenneth D. Forbus,  
Northwestern University
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Context & History
AI was the first field founded on 
the intellectual hypothesis that 
computation could become a scientific 
language for understanding the nature 
of intelligence, no matter what the 
substrate. Cognitive Science was the 
second, a multidisciplinary gathering 
of researchers in AI, psychology, 
linguistics, neuroscience, anthropology, 
and other disciplines. Computational 
ideas from AI were highly influential in 
early cognitive science. However, over 
time, AI has drifted apart from the rest 
of cognitive science, for a variety of 
reasons [3]. We believe that there are 
now important benefits to be gained 
from rebuilding those bridges and 
exploring how progress in AI can help 
understand human cognition (and 
animal cognition more broadly) and 
how progress in other areas of cognitive 
science can help us build better AI 
systems. In some cases, this will be 
learning how to achieve in software the 
kinds of cognitive capabilities organisms 
have, and in other cases, deliberately 
choosing to be different in ways that 
complement human cognition so that 
human-AI teams are more productive.

Current State & Trends
Cognitive Science is broad, so we focus 
on three areas where research is likely 
to be synergistic with AI. 

Human-like learning and reasoning. 
Many animals learn, but humans are 
pre-eminent learners and reasoners 
in many ways. A surprising amount of 
human learning is, in machine learning 
terms, incremental, continual, and data-
efficient, often producing articulable 
models (e.g. Gentner & Maravilla, 2018). 
While today’s industrial knowledge 

graphs reach into the tens of billions 
of facts, they lack the expressiveness 
of human conceptual structure [4]. 
Today’s reasoning systems, like SAT 
solvers and model checkers, are often 
superhuman in the size of the problems 
they address and the complexity of the 
solutions they generate [2]. But today’s 
AI reasoning systems cannot reason 
robustly with incomplete and partially 
incorrect domain theories, nor can they 
reason from large bodies of experience 
as people do. 

Cognitive architectures are systems 
that explore hypotheses about the fixed 
structures that define the processes 
and representations used for cognition 
[7]. They are used to investigate how 
to build AI systems that do real-time 
integration of perception, cognition, and 
motor control across many tasks, and to 
better understand human intelligence. 
For example, cognitive architectures 
have been used to simulate findings 
(and make predictions) from 
cognitive psychology and cognitive 
neuroscience (e.g. [1,8]). While every 
cognitive architecture involves multiple 
processes and representations, they 
vary considerably in the subset of 
human cognition they explore and the 
granularity of assumptions made.

Social agents. One of the signature 
properties of humans is that we 
construct and live in a world of 
collaboration where we learn about 
each other and culturally-specific social 
norms through interaction with others. 
Progress in understanding how to build 
social agents is essential to building 
AI systems that live in our world as 
collaborators and partners [9]. Social 
AI is often developed independently 
of findings and theories from social 
science and learns social behavior quite 
differently from how people acquire 
social skills.

Research Challenges
Progress on these challenges will 
lead to more adaptable AI systems 
and reduce the computational and 
environmental burdens of our systems, 
better understand human cognition, 
including social cognition, and provide 
better tools for thought. 

Human-like Learning and Reasoning

1. How can we develop human-like 
incremental, data-efficient  
learning methods that can produce 
articulable models? 

2. Develop formal ontologies  
that span the range of human 
conceptual structures, both concerning 
abstract concepts and sensory-motor 
grounded concepts.

3. How can AI systems robustly reason 
with incomplete and partially incorrect 
domain theories, and use experience  
in reasoning, with human-scale bodies 
of knowledge?

Cognitive Architectures

1. Expanding the higher-level cognitive 
capabilities of cognitive architectures 
to include the dynamical integration 
of the full range of human capabilities 
in response to task demands: diverse 
forms of reasoning, metacognition, 
online, lifelong continual learning across 
modalities and knowledge types, and 
engaging in ongoing human interaction 
(e.g.[6]). These capabilities will require 
learning and reasoning over models of 
the physical world, abstractions,  
and other agents using symbolic 
relational and modality-specific 
representations of the current, future, 
and past situations.

AI & Cognitive Science
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AI & Cognitive Science

2. Exploring the integration of 
foundation models within cognitive 
architectures, including sources for 
knowledge and to interpret/generate 
natural modalities (e.g. [10]). Can the 
incremental learning capabilities 
exhibited by cognitive architectures 
overcome the limitations of stale 
information in foundation models?

3. Developing a comprehensive 
benchmark task suite to evaluate the 
breadth and integration of human 
cognitive capabilities in end-to-end 
performance as described above. 
The tasks should be diverse and 
broad to ensure robust assessments. 
Additionally, the tasks should 
be diagnostic, isolating cognitive 
capabilities and their interactions to 
provide insights into specific strengths 
and weaknesses. 

Social Agents

1. Facilitate learning through interaction: 
The current generation of AI systems 
learn by passively observing social 
behavior rather than participating 
in social behavior (analogous to the 
distinction between decision theory 
and game theory). In contrast, people 
continuously co-construct behavior 
by mutually adapting to each other. At 
best, AI systems simulate interaction 
by training on frozen simulated users 

(e.g., RLHF), but this fails to account 
for mutual adaptation. Thus, we need 
research into ways to support (or 
simulate) interactive learning at scale.

2. Facilitate Privacy-preserving methods 
to acquire social data: Human social 
cues (face, voice) typically reveal the 
identity of the social actor. Interpreting 
social cues requires acquiring intrusive 
situational information (e.g., the 
meaning of a smile depends on not 
just the face of the target person but 
who else is in the situation, what they 
are doing, the nature of the physical 
environment, etc.). The ability to collect 
this information is wisely restricted 
by law (e.g., the EU’s AI act). Yet this 
dramatically restricts the ability to 
acquire data and deploy applications. 
How do we create algorithms that 
identify socially meaningful information 
while proving that no future algorithm 
could recover privacy/anonymity-
violating information from what is 
stored? Developing methods that can 
collect yet provably de-identify social 
data is crucial for the advancement of 
social agents.

3. Developing interactional benchmarks: 
Given that AI aspires to build systems 
with general social capabilities, we need 
a reliable way to measure and assess 
if new models are improvements. 

This includes characterizing potential 
for bias, issues of value alignment, 
whether the model is willing to engage 
in deception, etc. People now propose 
ad hoc collections of tasks, but research 
is needed to develop a comprehensive 
taxonomy of tasks and measures. 
In contrast, the social sciences have 
developed theory-based ontologies 
for characterizing social situations. 
Research is needed to translate 
these findings into systematic and 
comprehensive benchmarks of human 
social and interactional behavior.

https://doi.org/10.1111/j.1756-8765.2010.01083.x
https://doi.org/10.1787/004710fe-en
https://doi.org/10.1007/s10462-018-9646-y
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Engagement with other areas of cognitive science 
varies across the survey respondents, with 30% 
responding to the questions in this section. Among 
those who responded, in terms of influence on 
their research, 18% said always, 32% said usually, 
32% said sometimes. Only 2.8% said never and 12% 
said rarely. Thus 82% are influenced to a reasonable 
degree by research in other areas of cognitive 
science. Which other areas provide the most 
influence? Our respondents report psychology 
(82%), Neuroscience (44%), Linguistics (40%), and 
Anthropology (22%), with 13% mentioning other 
fields, Philosophy being the most common. In 
terms of what issues are most relevant, a broad 
set of creative responses were produced, some 
quite creative, e.g. studying how minds completely 
different to our own might function.
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Hardware & AI
Hardware/software architecture co-design for artificial 
intelligence involves creating hardware and software 
components that are specifically designed to work together 
efficiently, maximizing the performance and energy  
efficiency of AI systems.

Main Takeaways
•	 Efficient algorithm implementation relies on available hardware, and hardware 

design optimizes for dominant algorithms.

•	 Energy and throughput are key challenges in training of large-scale models, 
while numerical representations, sparsity, and data / model parallelism are 
seen as key enablers for large-scale training and inference

•	 Deployment of AI systems at the edge remains challenging for several reasons 
including competing resource allocation and scheduling needs for integrated 
systems and heterogeneous hardware, energy needs and thermal dissipation 
limits, and application-specific real-time requirements.

CHAIR

Joydeep Biswas,  
University of Texas at Austin
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Context & History
Through the history of AI, successful 
deployments have been tightly 
coupled with hardware considerations 
- algorithms that leveraged existing 
hardware features were readily 
deployed, and hardware advancements 
followed to accelerate the dominant 
algorithms. Prior to the widespread 
adoption and deployments of neural 
networks, there had been a few 
instances of AI-specialized hardware  
to accelerate search and optimization, 
but the space of AI-specialized 
hardware accelerators really took 
off with the large-scale adoption of 
artificial neural networks. 

As of 2025, the state of hardware-
software co-adaptation for AI can be 
summarized as follows:

•	 Algorithms that are easy to 
implement and scale up given current 
hardware get broadly adopted

•	 Hardware design seeks to accelerate 
computational operations seen 
as most relevant given current 
algorithms in use

•	 Energy (consumption and 
dissipation) and throughput (data 
and compute) are the  
biggest challenges in training of 
large-scale models

•	 Numerical representations, 
sparsity,and data / model 
parallelism are seen as key enablers 
for large-scale training and inference

•	 Deployment of AI systems at the 
edge remains challenging for several 
reasons including competing 
resource allocation and scheduling 
needs for integrated systems and 
heterogeneous hardware, energy 
needs and thermal dissipation limits, 
and application-specific real-time 
requirements.

Current State & Trends
We summarize past and present 
hardware-software co-design by classes 
of AI approaches:

•	 AI For Hardware Design: Chip layout 
and circuit design has benefited from 
automatic routing powered by integer 
linear programming (ILP) solvers, 
and functional verification has been 
used for verifying chip designs. 
There has been significant recent 
interest in applying machine learning 
techniques to chip design [11]

•	 Symbolic AI, Planning, and 
Search: Deep Blue [1], the IBM 
supercomputer engineered to 
play chess and best known for 
defeating world champion Garry 
Kasparov, demonstrated the 
success of specialized hardware for 
search. More recently, robot motion 
planning has been accelerated using 
field-programmable gate arrays 
(FPGAs) [2], graphics processing units 
(GPUs) [6], and leveraging single-
instruction multiple data (SIMD) 
instructions [8].

•	 Probabilistic Methods, Numerical 
Optimization: Computational 
geometry, sensor fusion, and state 
estimation rely on SIMD-accelerated 
linear algebra operations (e.g., the 
Eigen C++ linear algebra library), and 
numerical solvers rely on hardware-
optimized matrix factorization. Linear 
algebra libraries such as Intel MKL, 
AMD OCL and Nvidia cuSOLVER 
include hardware-specific accelerated 
linear algebra operations as well 
as specialized dense and sparse 
factorization routines. Application-
specific integrated circuits (ASICs) 
have been used to accelerate visual 
localization and mapping algorithms 
for edge devices [3].

•	 Machine Learning: Machine learning 
today is dominated by artificial 
neural networks, and there exist a 
wide range of hardware accelerators 
designed for such workloads, 
including GPUs, TPUs, Image 
Processing units, Graphcore IPU, and 
neuromorphic computing. The tight 
coupling between hardware and 
state of the art in machine learning 
can be effectively summarized 
as, “Deep Learning was enabled 
by hardware and its progress is 
limited by hardware” [5]. While the 
landscape of model architectures 
is fast-changing, key innovations 
that have proven useful for 
acceleration include novel number 
representations [5], accelerated 
matrix multiplications, high-
bandwidth interconnects including 
optical interconnects [7], and limited 
sparsity [5]. High-performance 
deployment requires deep 
hardware-specific optimization. 
While general-purpose libraries 
such as TensorFlow and PyTorch 
provide ready acceleration for rapid 
prototyping and research, significant 
performance boosts can be had  
by algorithm- and hardware- 
specific optimization.

Research Challenges
Number representations: State-
of-the-art models have shown to 
benefit from increased throughput 
with reduced numerical precision with 
minimal loss of accuracy - and for the 
same total number of bits in a model, 
reduced representations may in fact 
demonstrate higher performance [10]. 
Adapting hardware to model-optimized 
number representations is a promising 
future direction.

Hardware & AI
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Sparsity: While numerical solvers rely 
on sparsity for effective large-scale 
matrix factorization, similar gains are 
hard to achieve for arbitrary sparsity 
patterns in ML models. Hardware 
support for more general sparsity 
structures is an open challenge

Scaling and systems-level constraints: 
Training state-of-the art ML models 
requires significant systems engineering 
beyond accelerating compute. 
Challenges include memory and 
communication bottlenecks, model- 
and data- parallelism for large-scale 
distributed training and inference,  
peak storage throughput for 
checkpointing, energy consumption, 
and thermal management.

Deployment at the edge: With the 
dramatic increase in state-of-the-
art model sizes and computational 
complexity, there are significant 
challenges in deploying AI systems 
at the edge, including power usage, 
thermal dissipation, and memory. 
Furthermore, deployed systems 
often integrate a large number of 
heterogeneous components,  
leading to resource allocation and 
scheduling challenges. 

AI for systems and hardware: 
Anticipating AI algorithm advances 
is difficult. As the pace of change 
hastens, human hardware engineers 
and software-stack developers will 
inevitably fall behind in designing 
good co-optimization techniques. 
Developing AI techniques that assist 
human design and shorten optimization 
timelines, and inform or control run-
time adaptation are thus likely to be of 
central importance [9]. 
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The survey shows a strong community consensus 
on the need for a close interplay between AI 
hardware and research.

1. In response to the question on co-evolution of 
hardware and AI, 75% of respondents rated it as 
either “very important” (52.63%) or “absolutely 
critical” (22.81%), underscoring a widespread 
belief that breakthroughs hinge on integrated 
hardware/software design. Similarly, when asked 
about the dependency of algorithmic progress on 
hardware, 61% of participants felt that advances 
in hardware are essential - with 42.11% stating that 
progress is “closely linked” and 19.30% asserting it 
is “inseparable”.

2. There is also significant support for developing 
hardware-agnostic abstractions. In response to 
the question polling agreement for the statement 
that developing hardware-agnostic abstractions 
is essential, 57.9% (combining 47.37% who “agree” 
and 10.53% who “strongly agree”) believe that 
such abstractions are critical to allow researchers 
to focus on algorithmic innovation without being 
limited by hardware details; 28.07% remained 
neutral on this point while 14% disagreed 
(combining 10.53% who “disagree” and 3.51% who 
“strongly disagree”).

3. Regarding hardware usage, traditional 
platforms continue to dominate both training 
and deployment. For model training, 80.70% of 
respondents use GPUs and 68.42% use CPUs. A 
similar trend is observed in deployment, where 
68.42% use CPUs and 68.42% use GPUs.

4. Most AI deployments happen either on a local 
user computer (71.93%), or on a cloud platform 
(59.65%). To a lesser degree, deployments occur on 
edge-compute optimized hardware (19.3%) or on 
mobile devices (15.79%).

5. When it comes to the factors limiting effective AI 
model development, survey results indicate that:

•	 For training limitations, memory capacity is 
the top concern (52.63%), followed by compute 
throughput (49.12%), memory throughput 
(35.09%), and power consumption (28.07%).

•	 For deployment challenges, compute 
throughput is the most critical bottleneck 
(47.37%), with memory capacity (35.09%) and 
power consumption (24.56%) also playing 
significant roles. 

•	 For both training and deployment, cost was 
mentioned as an additional concern by several 
respondents in addition to the survey options.

6. Among the respondents who reported 
integrating multiple components, challenges 
were roughly evenly distributed across several 
factors including real-time constraints (33.33%), 
communication between components (29.82%), 
and managing hardware resource contention 
among components (24.56%). 
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AI for Social Good
AI for social good is a subdiscipline of AI research where 
measurable societal impact, particularly for vulnerable  
and under-resourced groups, is a primary objective, focusing 
on areas that have historically lacked sufficient AI research  
and development. 

Main Takeaways
•	 Ethical and Impact-Driven AI Development – AI4SG projects have grown 

significantly in the past decade spurred by advancements in AI and ML, and they 
have prioritized ethical considerations, fairness, and societal benefits, ensuring 
solutions address real-world problems in a responsible manner.

•	 Interdisciplinary Collaboration is Crucial – Successful AI4SG initiatives require 
strong partnerships between AI researchers, domain experts, policymakers, and 
local communities to ensure relevance and long-term sustainability.

•	 Scalability and Sustainability Challenges – While AI4SG has demonstrated 
significant potential, maintaining and scaling solutions in resource-constrained 
environments remains a key challenge.

CHAIR

Millind Tambe,  
Harvard University
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Context & History
 “AI for Social Impact” (AI4SI / AI4SG) 
has emerged as a distinct sub-discipline 
within AI, characterized by its focus on 
measurable societal impact, particularly 
for vulnerable and underserved 
populations. Unlike traditional AI 
research, which often prioritizes 
methodological advancements, AI4SI 
places direct social impact as a primary 
objective. It addresses problems that 
have historically lacked sufficient 
attention in AI research, aiming to 
bridge the gap between AI capabilities 
and real-world societal challenges such 
as poverty, agriculture, public health, 
and environmental conservation. The 
goal is to create impactful solutions 
tailored to real-world problems, often 
in resource-constrained environments.

AI4SI research necessitates deep 
engagement with domain experts 
and community members to identify 
relevant problems, design effective 
interventions, and rigorously evaluate 
their impact. This interdisciplinary 
approach draws insights from fields like 
human-computer interaction, public 
health, and social work, emphasizing 
the importance of understanding 
and addressing the specific needs 
of targeted communities. These 
projects require a balance of technical 
innovation, ethical considerations, and 
practical feasibility. 

The “AI for Social Good” workshop 
organized by the White House Office 
of Science and Technology Policy in 
2016 may be credited as the single 
event that sparked a significant 
interest in this topic [1]. It ended up 
unifying diverse efforts focused on 
social impact under one umbrella 
emerging field. This surge in interest is 
attributed to several key factors. First, 

the remarkable advancements in AI 
technologies, including deep learning, 
natural language processing, and 
reinforcement learning, have provided 
powerful tools applicable to a wide 
range of social issues. The availability of 
increased computing power and large 
datasets has further accelerated this 
progress, enabling the development of 
sophisticated AI models.

Secondly, the establishment of 
government and industry-supported 
funding programs, dedicated 
workshops, conferences, and special 
tracks within major AI conferences has 
increased awareness and attracted 
researchers to AI4SG [2,3]. This 
increasing academic focus has led to a 
substantial rise in publications related 
to AI4SI, demonstrating the field’s 
growing maturity [4]. 

Current State & Trends
Advancing interdisciplinary 
collaboration is becoming the norm in 
AI for Social Good work. This necessity 
stems from the complex nature of 
societal challenges, which often require 
insights from diverse fields. Close 
partnerships with domain experts, 
local practitioners, and policymakers 
ensure that AI solutions are not only 
technically sound but also relevant 
and effective in the real world. This 
collaborative approach fosters a shared 
understanding of the problem and 
enables the development of solutions 
that are tailored to the specific needs of 
the communities they serve.

Emphasizing ethical AI is also critical, 
with fairness, transparency, and privacy 
as paramount considerations. Major 
concerns, such as bias in data collection 
and the unintended consequences of 

AI deployment, must be addressed 
from the outset to ensure that AI 
systems align with societal values and 
avoid harm. AI4SG projects, by their 
very nature, work with vulnerable 
populations and sensitive data, making 
ethical considerations even more 
crucial. By proactively addressing 
potential ethical issues, researchers 
can build trust with communities and 
ensure that AI is used for good, rather 
than exacerbating existing inequalities.

Several emerging opportunities are 
shaping the future of AI4SG. Firstly, 
leveraging cloud-based platforms for 
scalable AI deployments, allows for 
wider reach and impact. Cloud-based 
solutions enable the deployment of AI 
tools to remote or resource-constrained 
areas, democratizing access to AI 
technologies. Secondly, incorporating 
explainability and transparency in AI 
solutions is crucial for gaining trust 
from practitioners and beneficiaries, 
particularly in high-stakes domains 
like disaster response and public 
health. When AI systems can explain 
their reasoning and decision-making 
processes, they are more likely to be 
accepted and used effectively. Thirdly, 
emphasizing localized AI4SI solutions 
that can be sustainably maintained by  
end users fosters long-term impact 
and community ownership. By 
empowering local communities 
to manage and maintain AI tools, 
AI4SG projects can ensure that their 
benefits continue long after the initial 
development phase. Finally, exploiting 
available foundation models presents 
a significant opportunity to accelerate 
the development and deployment of 
AI4SG applications. These pre-trained 
models can serve as a starting point 
for developing AI solutions for specific 
social problems, reducing the time and 
resources required for development [5].

AI for Social Good
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Research Challenges
A significant challenge facing AI for 
Social Good research revolves around 
the design of AI systems that are 
not only technically effective but 
also deeply contextually relevant 
within social impact settings. This 
requires a nuanced understanding 
of the specific needs, cultural 
sensitivities, and practical constraints 
of the communities being served. 
Researchers must move beyond purely 
algorithmic considerations and engage 
in participatory design processes that 
prioritize the voices and experiences of 
end-users, ensuring that AI solutions 
are truly aligned with their real-world 
needs and challenges.

Another critical hurdle lies in 
overcoming the limitations of data. AI 
for Social Good projects frequently 
grapple with scarce, low-quality, or 
biased data, which can significantly 
impact the performance and fairness 
of AI models. Developing robust 
data collection strategies, employing 
techniques for data augmentation 
and bias mitigation, and exploring 
alternative data sources are essential 
for building reliable and equitable AI 
systems. This also requires a careful 
consideration of the cultural context in 
which data is gathered, ensuring that AI 
data collection methods are adapted 
to local practices, rather than imposing 
external standards.

Ensuring the sustainability and 
scalability of AI deployments in 
resource-constrained environments 
presents a further complex challenge. 
Beyond the initial prototype phase, 
the long-term viability of AI solutions 
depends on their ability to be 
maintained and scaled by organizations 
with limited resources, such as NGOs 
and government agencies. This 
necessitates the development of 
sustainable software architectures, the 
creation of user-friendly interfaces, 
and the provision of adequate training 
and support for local stakeholders. 
Moreover, funding these efforts, often 
because of the lack of commercial 
viability, is in itself a major concern.

Additionally, robust evaluation 
frameworks are crucial for assessing the 
impact of AI solutions in field settings 
and building stakeholder trust. These 
frameworks must go beyond traditional 
performance metrics and incorporate 
measures of social impact, user 
satisfaction, and ethical considerations. 
The accessibility community’s mantra, 
“Nothing about us without us,” [6] 
serves as a powerful reminder of the 
importance of involving stakeholders 
in all stages of the evaluation process. 
Furthermore, we must be vigilant 
against the potential for corporate 
ethics-washing or green-washing, 
ensuring that AI initiatives are genuinely 
driven by a commitment to social good, 
rather than serving as mere public 
relations exercises. 

Finally, there is currently also a gap 
between traditional AI education 
and the specific skills required for 
impactful social work. Standard 
AI curricula primarily focus on 
algorithm design and analysis, often 
emphasizing theoretical concepts and 
performance on benchmark datasets. 
This approach, while essential for 
advancing core AI methodologies, 
leaves students ill-equipped to address 
the complex, real-world problems 
that AI4SG tackles. Effective AI4SG 
research demands a broader skillset, 
extending beyond purely technical 
expertise. It requires the ability to 
collaborate effectively with domain 
experts, such as public health officials, 
environmental scientists, or social 
workers, and to engage meaningfully 
with community members whose lives 
are directly affected by the technology. 
Understanding the nuanced socio-
economic and cultural contexts of  
social challenges, and translating 
technical advancements into practical, 
user-centered interventions, are  
crucial competencies. 
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The AAAI Community Survey on the Future of  
AI research, with 475 responses, explored various 
aspects of AI, particularly its application to  
social good. A significant portion of respondents 
(119) engaged with questions related to AI for  
social good.

Regarding the relevance of AI for Social Good, a 
majority of the 119 respondents who answered this 
question found it relevant or very relevant to their 
research. Specifically, 33.61% considered it very 
relevant, 26.89% relevant, and 21.01% somewhat 
relevant. When asked about barriers to integrating 
AI into social impact projects, respondents cited 
several challenges. The most significant barrier, 
with 47.06% of respondents selecting it, was 
“Testing the solution in the field.” Other substantial 
barriers included “Scaling up the solution” 
(38.66%), “Connecting to non-profit or government 
organizations” (32.77%), “Problem definition” 
(36.13%), and “Assessing AI readiness” (30.25%). 
“Sustainability of the business model” was also a 
concern for 42.86% of respondents.

The survey also explored crucial resources for 
scaling AI-driven solutions for social impact. 
“Money” and “Data” were identified as extremely 
important by a large majority of respondents 
(the exact percentages are cut off in the provided 
snippets). Other important resources included 
“Government-companies partnerships,” 
“Government-university partnerships,” and 
“Technical support.” Finally, regarding measuring 
the success of AI interventions in addressing social 
challenges, “Improvement outcome” was the 
most frequently cited metric, with 47.90% of the 
119 respondents choosing it. “Sustainable results” 
were also considered important by 37.82%, and 
“Adoption rate” by 48.74%.
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AI & Sustainability
AI is rapidly transforming industries and holds immense 
potential to drive sustainability progress, ranging from 
accelerating the net-zero energy transition to enhancing 
climate resilience. However, its deployment also raises 
challenges, such as increasing energy and water demands. 
Ensuring AI advances sustainability rather than exacerbating 
environmental risks will require proactive efforts to shape  
its development, operations, and applications.

Main Takeaways
•	 While AI compute currently represents a very small share of global energy 

and water consumption, its rapid growth in certain regions is straining local 
electricity grids and water resources. Managing these impacts requires 
investments in local grid capacity and innovations that enhance hardware  
and software efficiency. 

•	 While concerns about AI’s potential environmental impact are rising, 
researchers and practitioners emphasize that AI’s most significant sustainability 
impacts—both positive and negative—are likely due to how AI is deployed and 
used rather than from the energy consumed in training and running models. 

•	 AI can be a powerful enabler of climate and sustainability goals. Beyond 
improving efficiency and reducing carbon emissions across industries,  
AI is accelerating breakthroughs in areas such as advanced battery materials, 
carbon removal technologies, and high-precision climate modeling.

CHAIRS

Eric Horvitz, 
Microsoft

Hiroaki Kitano, 
Sony Research
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Context & History
AI technologies have been advancing 
for decades, but recent developments 
in large language models and their 
widespread adoption are driving the 
increased use of computationally 
intensive AI tools across many sectors. 
As the computational intensity and 
adoption of AI technologies grow, so 
do concerns about its environmental 
footprint, particularly with regard to 
energy and water consumption.

At the same time, AI is emerging as a 
tool for sustainability with a promise 
of being transformational. Achieving 
ambitious climate and environmental 
goals—such as electrifying economies, 
tripling renewable energy capacity, 
decarbonizing industries, and increasing 
sustainable food production by 50%—
requires system-wide transformations. 
AI can support these transformations by 
improving environmental monitoring, 
optimizing energy systems, enhancing 
efficiencies across industries, and 
accelerating materials discovery. For 
example, advances in material sciences 
have led to the design of catalysts that 
reduce the cost of carbon capture  
and decrease greenhouse gas emissions 
from industrial processes like  
concrete production.

Recognizing these opportunities and 
challenges, international initiatives 
are aligning AI development with 
sustainability priorities. For example, 
the International Energy Agency 
(IEA) has launched an initiative called 
“Energy for AI and AI for Energy,” 
which explores how AI can both drive 
energy innovation and manage its own 
resource requirements. In spring 2025, 
the IEA will publish a special report 
on AI and Energy and launch an AI 
Observatory to track AI’s electricity 
consumption and its applications in the 

energy sector. A new initiative was also 
launched in 2025 to establish energy 
scores for different AI models (AI Energy 
Score). Meanwhile, the Coalition for 
Sustainable AI, established by France in 
collaboration with the United Nations 
Environment Programme (UNEP) and 
the International Telecommunication 
Union (ITU), is developing guidelines  
for minimizing AI’s environmental 
impact and promoting best practices 
across industries.

Current State & Trends
Trend: Rising Resource Demands of 
AI Compute. The rapid expansion of 
generative AI is significantly increasing 
energy and water demands in data 
centers, driven by both model training 
and inference workloads. For example, 
training GPT-3 (175 billion parameters) 
consumed an estimated 1,287 MWh 
of electricity and emitted 552 metric 
tons of CO2 has been reported to have 
consumed 1287 MWh of electricity with 
the emission of 552 metric tons of CO2 
[1]. While training large models is highly 
energy-intensive, the greater long-term 
energy demand is likely to come from 
inference workloads—that is, running 
these trained models in real-world 
applications. Over a model’s lifetime, 
inference can account for a far  
greater cumulative energy footprint 
than training.

Data centers—the backbone of 
AI infrastructure—accounted for 
approximately 2% of global electricity 
demand in 2023 [2], and less than 1% 
of global greenhouse gas emissions [3]. 
While AI workloads currently represent 
only a small fraction of data center 
electricity consumption, this share is 
expected to grow. In 2022, AI workloads 
accounted for roughly 1% of total data 
center electricity use; by 2026, this 
figure is projected to rise to 9% [3].

Projections suggest that global data 
center electricity demand could 
double by 2030, though the extent 
of this growth will depend on market 
trends, algorithmic improvements, and 
hardware efficiency gains [4]. Even under 
high-growth scenarios, the IEA estimates 
that AI-related electricity demand will 
remain a relatively small portion of 
global energy consumption [4]. 

However, regional disparities are 
emerging. In some high-density AI 
hubs, data center energy consumption 
is rising rapidly. For example, in the 
European Union, electricity demand 
for data centers is growing by 
approximately 9% per year, with AI’s 
rising computational needs potentially 
pushing this figure above 5% of total 
EU electricity demand by 2026 [3]. In 
the U.S., the world’s largest data center 
market, AI-driven growth has increased 
data center electricity use to over 4% 
of national consumption in 2023, more 
than doubling since 2018. Projections 
suggest that by 2028, data centers could 
account for between 7% and 12% of U.S. 
electricity demand, depending on AI 
growth scenarios [5].

Trend: Energy-Efficient AI and 
Renewable-Powered Infrastructure.  
As AI adoption expands, several 
strategies are emerging to improve 
sustainability, including:

•	 Advances in hardware efficiency: 
GPUs, widely used for AI workloads, 
consume more energy than 
traditional CPUs. However, while 
absolute power consumption per 
GPU is rising, efficiency per unit of 
computation is also improving. [6,7] 
Optimizing hardware allocation—
reserving high-power GPUs for 
intensive tasks and using low-power 
CPUs for lighter workloads—can help 
reduce overall demand.
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•	 Small Language Models (SLMs): 
While large language models (LLMs) 
require extensive computation, 
smaller models optimized for 
specific tasks are emerging as 
an energy-efficient alternative. 
SLMs can execute on devices 
like laptops and smartphones, 
lowering computational intensity 
while maintaining performance for 
targeted applications [8].

•	 Cooling innovations: Traditional 
air cooling in data centers is 
inefficient; switching to liquid 
cooling can significantly reduce 
energy consumption. While some 
liquid cooling systems require water, 
advances in water-free cooling offer 
solutions that minimize both energy 
and water use.

•	 Optimizing data storage: AI 
workloads require massive data 
storage, increasing electricity demand 
in data centers. Techniques such as 
data compression, infrastructure 
optimization, and edge computing 
can lower these energy costs.

•	 Demand Response and Load 
Shifting are strategies that help 
balance power grids by adjusting 
electricity consumption in response 
to grid conditions. Demand 
Response involves incentivizing 
customers to modify their energy 
use, either by reducing demand 
during peak times, shifting it to 
periods of greater supply, or utilizing 
on-site generation and storage. 
Load shifting specifically focuses on 
rescheduling energy consumption 
to align with lower-cost or lower-
carbon electricity availability. 
Increasingly, both approaches 
are being used to reduce carbon 
emissions by shifting loads from 
high-carbon-intensity periods to 
times when cleaner energy sources 
are more abundant.

Trend: AI Applications for 
Sustainability. Artificial intelligence 
is emerging as a transformative tool 
for sustainability, offering three key 
capabilities that can accelerate climate 
action and environmental protection. 
AI technologies play a central role in the 
area of computational sustainability 
[9], centering on the goal of leveraging 
mathematics, computer science, and 
information science on sustainability 
and broader opportunities for 
enhancing the well-being of humanity. 
AI promises to play a transformative 
role in sustainability, offering 
capabilities that enhance efficiency, 
optimize resources, and accelerate 
technological breakthroughs. 

AI methods can enhance people’s 
ability to predict and optimize systems, 
improving efficiency in energy grids, 
water management, and industrial 
operations while reducing waste and 
emissions. Advances in AI modeling 
are being employed in projects that 
demonstrate how AI technologies for 
pattern recognition, prediction, and 
optimization can be applied to address 
multiple sustainability challenges, 
from conservation and protection of 
wildlife to transportation efficiencies, 
to breakthroughs in chemistry and 
materials science that can accelerate 
the discovery of materials that can 
facilitate the breakthroughs in battery 
technology, carbon capture solutions, 
and low-carbon industrial materials. 

In water and climate resilience, AI 
has the potential to revolutionize 
hydrological forecasting, irrigation 
systems, and disaster preparedness 
[10,11]. AI-powered leak detection 
reduces water loss [12]. In climate 
risk management, AI and machine 
learning is being used to downscale 
climate models for localized flood 
and heatwave prediction, allowing 

governments to better prepare for 
extreme weather events [13]. AI-
assisted wildlife monitoring now 
enables 99.3% accuracy in species 
identification, dramatically improving 
conservation efforts [14].

A promising application of AI is energy 
optimization. Smart grid systems use AI 
for demand forecasting, load balancing, 
and renewable energy integration, 
helping to optimize energy distribution, 
reduce waste, and lower emission [15, 
16]. AI-powered predictive maintenance 
in electricity grids helps utilities 
minimize failures and operational 
disruptions [15]. 

A major shift is also underway 
in materials science, where AI is 
accelerating the discovery of low-
carbon materials at unprecedented 
speeds. Traditionally, developing new 
materials for batteries, carbon capture, 
and sustainable construction could 
take years or even decades. Today, AI 
models can scan millions of material 
combinations in days or weeks [17]. A 
collaboration between Microsoft and 
Pacific Northwest National Laboratory 
identified a new solid-state battery 
electrolyte in just nine months—a 
process that would have taken years 
through traditional experimentation [18].

AI can help to educate and empower 
the sustainability workforce, equipping 
scientists, policymakers, and engineers 
with tools to enhance decision-making 
and scale sustainable practices.

Research Challenges
The potential for AI to accelerate 
sustainability is clear. However, we have 
no guarantees that AI technologies 
will serve as a net positive force for 
sustainability. While AI has the potential 
to accelerate sustainability progress, 
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its energy and resource demands 
must be carefully managed. Ensuring 
AI accelerates sustainability progress 
will require focused research and 
innovation across a range of topics, 
including strategic investments in:

•	 Energy-efficient AI systems  
that minimize computational and 
water resources.

•	 Innovative AI applications that drive 
sustainability breakthroughs.

•	 Robust scenario modeling and  
data collection efforts to inform 
policy and guide sustainable  
AI development.

With proactive governance, targeted 
research, and cross-sector collaboration, 
AI can be genuinely positioned not as 
a sustainability risk, but as a powerful 
force for climate progress.

Addressing data gaps and large 
uncertainties 
While concerns about AI’s potential 
environmental impact are rising, 
researchers and practitioners 
emphasize that AI’s most significant 
sustainability impacts—both positive 
and negative—stem from how AI is 
deployed and used, rather than just the 
energy consumed in developing and 
running models [19].  AI applications can 
lead to indirect emissions effects—both 
positive and negative [20]. 

However, major uncertainties 
remain. It is difficult to predict how 
AI technologies will evolve or how 
their widespread adoption will impact 
sustainability. Assessing the net effects 
of AI on sustainability is challenging 
due to two main issues: (1) limited 
availability of reliable data and (2) 
the difficulty of measuring the actual 
impact of AI-driven interventions. There 
is a significant opportunity to develop 
more comprehensive datasets to better 
understand AI’s sustainability footprint.

Many AI-driven solutions depend 
on high-quality environmental and 
industrial datasets, but these are often 
incomplete, proprietary, or heavily 
skewed toward high-income countries. 
Moreover, critical sustainability 
challenges—such as water scarcity and 
biodiversity loss—are hindered by major 
data gaps [21, 22]. AI models trained 
on limited or biased datasets may fail 
to account for regional environmental 
variations, leading to inaccurate 
predictions or inequitable sustainability 
solutions. Investing in data collection 
and standardization can help address 
these gaps.

Limited data availability of AI’s use 
of energy and water usage presents 
challenges. Few companies disclose 
detailed information about the energy 
consumption, carbon footprint, or water 
use of their AI workloads. The absence 
of standardized reporting frameworks 
makes it difficult for policymakers, 
researchers, and the public to assess 
the true sustainability impact of AI. 
Emerging regulations, such as the EU AI 
Act, may fill this gap.

Research on modeling and scenarios. 
AI has the potential to enhance 
efficiency in sectors like transportation, 
agriculture, and manufacturing while 
accelerating conservation efforts. 
However, predicting the long-term 
sustainability impact of AI adoption 
remains a challenge. Scientists have 
called for the development of modeling 
frameworks that assess both the direct 
resource consumption of AI and its 
broader environmental implications 
under multiple future scenarios [20]. As 
an example of uncertainties, consider 
Jevons Paradox, where efficiency 
improvements lead to increased 
overall consumption. As AI hardware 
and software become more efficient, 
the cost of computation declines, 

making AI more accessible and widely 
adopted. Paradoxically, this increased 
accessibility can drive up overall energy 
and resource consumption, offsetting 
efficiency gains. While individual 
AI computations are becoming less 
energy-intensive, the exponential 
growth of AI workloads means that total 
demand continues to rise, potentially 
offsetting many of the gains from 
efficiency improvements [23].

To navigate these complexities, policy-
relevant scenario analyses are essential. 
These analyses should assess AI’s full 
environmental footprint—including 
direct energy and water use as well 
as systemic effects across industries 
like healthcare, manufacturing, 
agriculture, and transportation. AI-
driven transformations could either 
accelerate decarbonization or intensify 
environmental pressures, but current 
research remains fragmented. Investing 
in scenario modeling can inform policy 
and guide strategic investments while 
communicating key uncertainties to 
policymakers and scientists.

Scenario modeling—widely used in 
finance and climate risk assessment—
can help quantify these uncertainties 
by exploring different AI adoption 
pathways, ranging from minimal 
integration to widespread deployment 
aligned with global sustainability 
goals. Researchers should develop 
forecasting frameworks that evaluate 
various possible futures, from best-
case scenarios where AI enables deep 
emissions reductions to worst-case 
scenarios where unchecked expansion 
increases environmental strain. These 
insights are critical for steering AI 
innovation toward sustainability while 
mitigating unintended risks.

Designing resource-efficient AI 
systems. There is a significant 
opportunity to design AI models  



52

AI & Sustainability

and infrastructure to be more  
energy- and resource-efficient.  
Key strategies include:

•	 Optimizing AI model architectures 
to improve computational efficiency 
without sacrificing performance.

•	 Developing specialized AI hardware 
that consumes less energy and water 
than traditional GPUs.

•	 Enhancing AI infrastructure 
management to enable carbon-
aware computing, where AI 
workloads are scheduled based on 
grid conditions to minimize carbon-
intensive energy consumption.

Expanding AI-Enabled Solutions for 
Critical Sustainability Opportunities. 
The most transformative sustainability 
benefits of AI are likely to come from 
new, targeted applications that address 

critical environmental challenges. There 
is a major opportunity to strategically 
apply AI to complex sustainability 
problems, from introducing new 
efficiencies in transportation systems 
and industrial processes to advances in 
chemistry, material science, and  
the biosciences.

For example, AI shows promise with 
revolutionizing materials discovery by 
accelerating the identification of new 
battery storage materials (e.g., see [24]), 
carbon capture solutions, and low-
carbon industrial materials. Other high-
impact opportunities include:

•	 Developing cost-effective, long-term 
energy storage solutions to enable 
greater reliance on intermittent 
renewables like wind and solar.

•	 Achieving large-scale carbon dioxide 
removal at less than $100 per ton.

•	 Expanding electricity transmission 
capacity and reliability to integrate 
more renewable energy sources.

•	 Reducing water and gas  
leaks at a global scale through  
AI-powered monitoring.

•	 Filling critical biodiversity data 
gaps and optimizing conservation 
programs with AI-driven insights.

•	 Introducing new efficiencies  
into transportation systems  
(see, e.g., [25]).

Addressing these challenges requires 
close collaboration between AI 
researchers and domain experts, 
development of new AI methods and 
applications, and investments in efforts 
to compile and integrate relevant 
datasets for analysis, modeling, and 
machine learning.
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COMMUNITY OPINION

A recent survey of AI community members 
revealed a divided perspective on AI’s 
environmental impact:

•	 Approximately 35% of respondents agreed  
or strongly agreed that AI’s environmental 
harms are outweighed by its potential to 
address climate challenges. Conversely, 
another 35% disagreed or strongly disagreed 
with this statement.

•	 Over 70% of respondents believe that data-
intensive AI significantly impacts global 
resource consumption. 

•	 57% of respondents expressed concerns that 
AI’s energy consumption could slow the pace of 
AI research.

•	 Nearly 75% of those surveyed called out energy 
efficient training and inference procedures 
as being most needed to reduce AI energy 
consumption, followed by 20% calling  
out innovation in energy systems for data 
centers, and 5% for innovating with energy-
efficient chips. 

When asked where AI could have the greatest 
impact on sustainability:

•	 Over 30% identified logistics, transportation, 
and infrastructure optimization as the  
top opportunity, and approximately 10%  
each cited AI’s role in CO2 reduction, 
agriculture, disaster prediction, and advancing 
the circular economy. Only 5% saw  
AI’s greatest sustainability potential in 
biodiversity conservation.

These insights underscore the AI community’s 
recognition of both the opportunities and risks 
associated with AI’s sustainability trajectory.
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AI for Scientific 
Discovery

Artificial Intelligence (AI) is revolutionizing scientific discovery 
by accelerating the entire research cycle from knowledge 
extraction and hypothesis generation to automation of 
experimentation and verification at an unprecedented speed.

Main Takeaways
•	 Progress of AI for Scientific Discovery will accelerate the pace of scientific 

discovery in unprecedented ways and transform the way we do science.

•	 Highly automated AI systems for scientific discovery are emerging: While their 
capabilities are limited, they can execute the entire scientific discovery cycle 
with minimal human intervention for defined tasks.

•	 AI’s role in scientific discovery raises new challenges in ethics, collaboration,  
and reliability, requiring interdisciplinary efforts to address them.

CHAIR
Hiroaki Kitano, 
Sony Research
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Scientific discovery has historically 
been driven by human ingenuity, but 
Artificial Intelligence (AI) is emerging as 
a pivotal tool in reshaping this process 
and accelerating it.

Early AI systems, such as DENDRAL, 
designed in the 1960s, were among  
the first to automate hypothesis 
generation and problem-solving in 
organic chemistry[1]. Similarly, systems  
like EURISKO explored heuristic 
learning and adaptation, demonstrating  
the potential of AI in creative  
problem-solving [2].

These pioneering efforts laid the 
groundwork for AI’s role in science 
by showcasing its ability to process 
datasets and formulate hypotheses.

With the progress of technology for 
comprehensive and high-precision 
measurements, scientists are 
overwhelmed by the massive data 
generated and the complexity of 
systems behind it. Technologies to 
discover patterns from massive data 
that can be linked to novel hypotheses 
to be tested by experiments are 
essential for scientific research.  
AI for Scientific Discovery is a much-
needed research area and is expected 
to drive practice of science in a data-
driven approach.

There is a spectrum of approaches in 
how AI transforms scientific discovery. 
First, we envision increasingly powerful 
AI tools that will assist human scientists 
to make discoveries faster and enable 
them to tackle even more challenging 
problems. The alternative approach is 
to develop integrated AI and robotics 
systems aiming at performing the 
entire cycle of scientific research 

with minimum interventions from 
human scientists. The middle ground 
is to position AI as a collaborator 
with scientists that can interactively 
solve scientific problems. AI for 
Scientific Discovery embraces a wider 
spectrum of relationship between AI 
and scientists, and rapid progress is 
expected in all ranges of this spectrum 
that will fundamentally transform the 
way we do science. A series of papers, 
reports and workshops concluded that 
AI for Science is one of the  
most important research areas in 
coming years [3–6].

Current State & Trends
1. From Tools to AI Collaborators and 
Autonomous AI Scientists 
AI’s capability in supporting scientific 
discovery has expanded dramatically, 
with systems like AlphaFold2 from 
DeepMind achieving groundbreaking 
success in structural biology [7,8]. 
AlphaFold2 solved the decades-
old problem of protein folding, 
revolutionizing molecular biology 
and enabling applications in drug 
discovery and biomedicine. AlphaFold2 
represents the most successful case 
of AI as a tool for scientific discovery 
that transforms biomedicine and 
biochemistry research and resulted 
in a 2024 Nobel Prize in Chemistry. 
An increasing number of AI/robotics 
systems have been developed to be 
effective tools for scientists. Beyond 
biology, numerous AI tools have 
been developed for chemistry [9–11], 
material science [12], mathematics 
[13–15] and many other scientific fields 
to accelerate scientific discovery. For 
example, the Ramanujan Machine is an 
early effort to generate conjectures on 
fundamental constants that can be a 

tool for mathematicians undertaking a 
specific task in mathematics[13]. AI and 
robotics integrated systems have  
been developed that perform a 
specific type of chemistry experiment 
automatically [16,17].

The other end of the spectrum is 
to develop highly autonomous AI/
robotics systems to perform scientific 
discovery without (or with minimum) 
human interventions. The Adam and 
Eve systems, developed by Ross King, 
represent the early effort on the other 
side of the spectrum where scientific 
discovery occurs without human-in-
the-loop [18,19]. These ‘robot scientists’ 
not only generate hypotheses but also 
design and execute experiments to 
test them. For example, Eve identified 
potential drugs for malaria through 
automated high-throughput screening, 
showcasing AI’s ability to iterate 
scientific cycles autonomously [20]. The 
Nobel Turing Challenge represents the 
extreme end of the challenge gearing 
toward highly autonomous AI and 
robotics systems with the capability for 
high impact scientific discovery [21,22]. 
Proposed as a grand vision, it aims to 
develop AI systems capable of scientific 
discoveries on par with Nobel Prize-
winning work. This challenge entails an 
instance of the Feigenbaum test - Can 
I replicate the best human expert in 
defined domains? - that is a variation 
of the Turing test [23]. These systems 
would not merely assist researchers but 
act as autonomous entities capable of 
proposing, testing, and refining theories.

2. Impact on Science 
AI’s integration into scientific workflows 
heralds a paradigm shift:

•	 Accelerated Discovery: By 
automating an entire cycle of 
scientific discovery, AI can reduce 

AI for Scientific Discovery
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the time required to achieve 
breakthroughs, enabling a rapid 
expansion of knowledge.

•	 Enhanced Collaboration: AI systems 
like AlphaFold demonstrate how 
interdisciplinary approaches—
combining AI, biology, and 
physics—can tackle long standing 
challenges. Eventually, a network of 
collaboration may be formed among 
AI systems enabling extensive 
exchange of ideas and data at 
the scale not possible by human 
scientists.3. Exploration

•	 Beyond Human Intuition: AI’s ability 
to exhaustively explore hypothesis 
spaces enables discoveries that 
might elude human researchers 
constrained by cognitive and 
methodological biases.

•	 Transformation in Data Handling: 
An AI-centric approach dramatically 
changes the way researchers handle 
experimental data. In the AI-centric 
approach all data is important, 
not just the subset that strongly 
supports the expected outcome, but 
also data that are not consistent with 
the expectation because most, if not 
all, data need to be provided to AI 
system training for better hypothesis 
generation and prediction.

3. Social and Ethical Implications 
AI-driven science will likely have 
profound societal impacts:

•	 Healthcare Transformation: With 
AI accelerating drug discovery and 
personalized medicine, millions of 
lives could be saved or improved.

•	 Environmental and Climate Change: 
Rapid progress of material science, 
chemistry, and environmental 
sciences may provide us with 
discoveries that can be used to 
mitigate climate change and improve 
the state of the environment.

•	 Ethical Considerations: The 
autonomy of AI systems raises 
questions about accountability, 
credit for discoveries, and the 
potential displacement of human 
researchers. There are concerns 
that hazardous materials may be 
designed and produced with highly 
autonomous AI scientists. Ethical 
and safety measures shall be taken 
to prevent malevolent uses of 
powerful synthesis abilities with 
materials and biology [24]. Proper 
measures must be taken to prevent 
such uses.

Research Challenges
1. Communication issues: A major 
challenge may be to be able to 
understand and communicate with 
human scientists because accumulation 
of knowledge and communications with 
peers mostly takes the form of natural 
languages with ample ambiguities, 
analogies, and often with cultural 
context. Of particular importance:

•	 Commonsense knowledge: 
Professional knowledge is grounded 
in everyday knowledge. Construction 
of a shared broad conceptual 
knowledge base of the world, to 
ground reasoning and models and 
provide grist for analogies.

•	 Collaboration: Science is often 
a team sport, being able to work 
effectively with others (human or AI) 
will be important.

•	 Communication: Scientists talk, 
draw, and use multiple forms of 
interactive media. AIs for science 
will need to be able to read and 
understand the scientific literature 
and communicate well with  
human partners.

•	 Models of scientific reasoning and 
approaches to developing modeling 
and inference machinery that can 
augment human cognition for 
scientific discovery [25].

2. Defining Hypothesis Space: Science 
is an open-ended problem: Unlike 
most games, such as chess or the game 
of GO, the structure and scale of the 
problem space is not obvious and likely 
to be unbounded and could be with 
very high dimensionality. Extracting 
or acquiring knowledge and properly 
placing it within the space of scientific 
knowledge is a non-trivial problem. 
Similarly, the process of hypothesis 
generation faces the problem of 
identifying the dimensionality and scale 
of hypothesis space it should work on.

3. Inaccuracies, noise, and 
reproducibility of data: Data in science 
can be very noisy, inaccurate and 
not reproducible in some fields. In 
biology, inaccuracy and noise in data 
is considered to be inevitable due to 
artifacts introduced in experiments and 
with intrinsic variability of experimental 
samples. Studies revealed that a 
significant proportion of data reported 
in publications cannot be reproduced 
properly in biomedical research [26, 
27]. This may pose problems for the 
quality of hypotheses generated or their 
verification process at the early stage  
of the research. 
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COMMUNITY OPINION

In the community opinion survey, 32% of those 
responding consider this is somewhat relevant. The 
area of study that AI to be most useful is ranked 
as (1) Biology (47%), (2) Physics (14%), (3) Chemistry 
(12%), with 26% responding for other domains. 
In the question of if an AI system can ever make 
discovery worthy of the Nobel Prize, only 13% of 
those responding said never, with 25% saying no 
idea. 11% thought it might happen in the 2020s, and 
45% thought it might happen by the 2050s.

https://doi.org/10.1145/3576896
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Artificial General  
Intelligence (AGI)

Although the field of AI has long pursued the kinds of general-
purpose, human-level abilities captured by the term AGI, the 
rise of more general capabilities of neural net models has 
stimulated discussions about directions forward, implications 
around success, and doubts about pursuing the goal–which 
now appears to some observers to be within reach.

Main Takeaways
•	 Pursuing understandings of principles and machinery of intelligence that could be 

harnessed to reach human-level capabilities have always been central in AI, and was 
explicitly called out in 1956 as an important goal by founders of the discipline.

•	 Calls for focusing more centrally on the bigger picture of “human-level AI” and 
“artificial general intelligence” in the early 2000s arose in the context of the 
successful fielding of narrowly scoped AI applications and what some perceived 
as a lack of progress on the more visionary goals of the field. 

•	 Despite challenges with precise definitions and debate about the value of 
particular notions of AGI, the aspirational goals of AGI and closely related 
notions, such as “human-level AI,” have inspired many fundamental advances 
in AI and frame key research questions moving forward to more capable AI 
systems. On the other hand, success in creating AGI could create societal 
disruptions and risks and pose significant safety challenges, including 
challenges to human flourishing and survival.

CHAIRS

Eric Horvitz, 
Microsoft

Stuart Russell, 
University of California 
Berkeley
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Context & History
The AI field has long pursued general 
principles of intelligence with the 
direct implication that breakthroughs 
in our computational understanding 
of intelligence would enable general-
purpose capabilities. The Turing Test 
exemplifies this: to pass, a machine 
must match or exceed human 
knowledge and reasoning abilities 
across a range of domains in which 
people are expected to be competent.

The proposal for the Dartmouth 
workshop that initiated the AI field 
under that name, written in 1955, 
begins, “The study is to proceed on 
the basis of the conjecture that every 
aspect of learning or any other feature 
of intelligence can in principle be  
so precisely described that a machine 
can be made to simulate it. An 
attempt will be made to find how to 
make machines use language, form 
abstractions and concepts, solve 
kinds of problems now reserved for 
humans, and improve themselves.” This 
extraordinarily ambitious agenda set 
the tone for much subsequent work by 
the participants, including McCarthy’s 
“Programs with Common Sense”, 
Newell and Simon’s General Problem 
Solver, and Solomonoff’s Universal 
Induction. Just two years later, in 1957, 
Herb Simon predicted that “the range 
of problems [machines] can handle 
will be coextensive with the range 
to which the human mind has been 
applied.” Thus, AI has always had as 
its goal the creation of machines with 
general powers of intelligence. A great 
deal of AI research has continued in 
the vein of pursuing general principles 
of intelligence, including efforts in 
representation, sensing, and logical and 
probabilistic inference.

Over the decades, the vast majority 
of researchers focused on specific 
methodologies and components 
of intelligence without much 
consideration for their integration 
into general-purpose systems. While 
some researchers in specific areas 
were passionate about the potential 
for generalizing their advances, real-
world demonstrations were largely 
disappointing. Applications harnessing 
the frontiers in AI methods were narrow 
and brittle. The perceived lack of 
progress towards generally intelligent 
systems that could function in the 
real world led some within the field to 
complain that the big picture and high 
ambitions of AI were being forgotten. 
For example, Nils Nilsson’s 1995 paper 
“Eye on the Prize” [1] stated, “AI is now 
at the beginning of another transition, 
one that will reinvigorate efforts to 
build programs of general, humanlike 
competence,” but this was more of an 
exhortation than a statement of fact. 
The prospect of pursuing “human-level” 
intelligence came to the fore again in 
the early 2000s. For example, in 2002, 
Marvin Minsky organized a workshop on 
“Designing Architectures for Human-
Level Intelligence.”

The term artificial general intelligence 
(AGI) emerged in the same time period 
as an expression of high ambition by 
a younger generation of researchers 
who criticized the field’s seeming focus 
on narrow applications. Indeed, it 
was in the early 2000s when machine 
learning started to be harnessed in 
multiple narrow applications, each 
celebrated as a valuable advance. The 
narrowness of these applications led to 
calls to discover more generalizable and 
powerful methodologies, motivated by 
the fact that the principles of machine 
learning and reasoning can be applied 
across domains. 

AGI was initially defined as AI that could 
match or exceed human cognitive 
abilities across a broad range of tasks, 
echoing the original ambitions of the 
field in 1956. While these goals were 
not new to senior AI researchers, the 
use of the term AGI was seen by many—
both inside and outside the field—as a 
refreshing call for ambitious projects. 

Beyond AGI and human-level AI, other 
terms that gained traction around the 
same time include general-purpose 
AI and strong AI. However, AGI has 
become the dominant term in both 
research and public discourse. Popular 
books and articles frame AGI as a 
novel ambition, often portraying it 
as an unprecedented goal, despite 
its deep roots in the early history of 
AI. In many discussions, including 
those outside of AI research, AGI was 
linked to both utopian and dystopian 
futures, reflecting varying perspectives, 
expectations, and anxieties. 

The previous AAAI Presidential Panel, 
the Presidential Panel on Long-Term 
AI Futures [2], was established in 
2008 amid growing interest in AGI, 
a rekindling of high ambitions by AI 
leaders and growing public discourse, 
as well as an upswing in applications 
of AI being fielded in the open world. 
The set of meetings and final convening 
at Asilomar focused on key questions 
about feasibility, implications, 
ethics, and safety, as well as research 
directions for building powerful, 
general, human-level intelligences.

Different perspectives about the 
nature of AGI extend beyond the core 
definition of AI methods that could 
“match or exceed human cognitive 
abilities across a broad range of tasks.” 
For example, discussions of AGI, 
particularly in the popular press, have 

Artificial General Intelligence (AGI) 
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fueled speculation that sentience or 
consciousness could be a characteristic 
of AGI systems. AI researchers generally 
steer clear of such speculations, 
pointing out that the analysis and 
prediction of behavior is independent 
of attributions of sentience.

Some researchers have also suggested 
that AGI systems must, by definition, 
have “agentic” abilities, meaning that, 
like humans, they can function as actors 
that perceive, learn, process, and act 
upon their environment to achieve 
specific goals. Indeed, the capacity to 
act in pursuit of goals is a fundamental 
cognitive property of humans, and 
some AI systems have exhibited such 
capabilities in rudimentary form since 
the earliest days of AI.

Perhaps more confusing is the notion 
of “autonomy”and its link to AGI—
specifically, the possibility suggested by 
some that AGI systems might develop 
goals of their own, entirely distinct from 
those provided by humans. While this 
is logically possible—for example, an AI 
system might overwrite its objectives 
with new, randomly generated 
objectives—it’s less clear why it might 
do so, since that would guarantee 
failure in its current objectives. On the 
other hand, the formation of so-called 
“instrumental” subgoals—such as self-
preservation and acquiring additional 
computation and financial resources—
seems highly likely as AI systems 
pursue their original objectives. This is 
obviously a source of concern and an 
active area of longstanding research.

The fact that AGI systems would be 
more generally capable than humans 
raises obvious concerns about loss 
of control of AI; indeed, Alan Turing 
himself stated that “we should have to  
expect the machines to take control” 

once they exceeded human levels 
of intelligence. One source of risk is 
misalignment, where the AGI’s goals are 
not aligned with human preferences 
about the future; this could arise from 
misspecification or underspecification 
by humans—the so-called “King Midas 
problem”—or from AGI systems failing 
to understand human preferences 
correctly [3]. 

For some, AGI represents a potentially 
dangerous “threshold” that we cross at 
our peril. As an example, the “Gladstone 
Report” [4] commissioned by the US 
State Department states that “AGI is 
generally viewed as the primary driver 
of catastrophic risk from loss of control.” 
Others use the term “transformative 
AI” [5] to cover AI systems that have the 
potential to cause massive disruption 
of human civilization, noting that this 
does not require full AGI. We note that 
sentience and autonomy are not part 
of core definitions of AGI, even if some 
have made implicit assumptions about 
AGI having these attributes.

AGI is not a formally defined concept, 
nor is there any agreed test for its 
achievement. Some researchers suggest 
that “we’ll know it when we see it” or 
that it will emerge naturally from the 
right set of principles and mechanisms 
for AI system design. In discussions, 
AGI may be referred to as reaching a 
particular threshold on capabilities and 
generality. However, others argue that 
this is ill-defined and that intelligence 
is better characterized as existing 
within a continuous, multidimensional 
space. Some (e.g., [6]) contend that the 
lack of a clear definition makes AGI an 
unsuitable goal for AI research: human 
intelligence has many dimensions, and 
machines will likely far exceed humans 
in some areas while remaining inferior 
in others. Moreover, the criteria for 

comparison, including which particular 
humans serve as benchmarks and how 
much prior training they have received, 
are often left unspecified.

Some argue that AGI is not a desirable 
goal for AI research, contending 
that “matching or exceeding human 
cognitive abilities” does not necessarily 
lead to tools that enhance or 
complement human abilities. Instead, 
they argue, AGI’s short-term monetary 
value would be in replacing humans 
in most economic roles. Moreover, 
many of the purported benefits of 
AGI—in science, healthcare, education, 
and other fields—can be achieved 
through more narrowly focused tools, 
such as AlphaFold2. Nonetheless, AGI 
has become the canonical goal for 
ambitious AI companies. For example, 
Sam Altman, CEO of OpenAI, has 
stated, “The vision is to make AGI, figure 
out how to make it safe … and figure out 
the benefits” [7]. 

Current State & Trends
The trajectory of AI capabilities and 
benchmark results over the last 
decade is very clear and points to 
achieving human-level or superhuman 
capabilities on one task after another, 
as captured in the series of AI Index 
reports [8] and the 2025 International AI 
Safety Report [9]. 

Early successes were initially seen 
with speech recognition and object 
recognition from images, followed by 
advances in machine translation. The 
rise of new capabilities with generative 
AI has provided tools for synthesizing 
high-quality images and voices, and in 
2022 the mastery of generating language. 
Strong competencies were reached in 
2023 with multimodal models that span 
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language, imagery, audio (both as input 
and output), and physical embodiment. 
In 2024, we have seen major advances 
in reasoning, including success on the 
abstract reasoning challenge (ARC-AGI), 
on which AI systems had utterly failed 
before 2024.

Recent advances in capabilities with 
neural network models are based on the 
introduction of run-time deliberation 
mechanisms that learn to employ 
chains of inner thought, inspired by 
theories of higher-level cognition in 
humans. Whereas previous models 
directly mapped the input context to 
an answer in constant time, akin to fast 
intuitive human responses described 
as “system 1” cognition, the more 
recent wave of advances in “test-time” 
reasoning allow the AI to explore 
lengthy chains of verbal reasoning to 
find answers to complex questions. 
These algorithms consider and evaluate 
multiple possibilities in the style of more 
deliberative human cognitive processes 
that have been referred to as “system 
2” cognition. These also require much 
more computation at run-time, which 
may greatly increase both energy and 
monetary costs for deploying such 
systems, beyond just the cost of training.

Along with physical capabilities, 
reasoning competency was seen as 
the main remaining gap to human-
level intelligence; but the gap seems 
to be closing. There are now AI 
systems that score among the top 
few percent of humans on many 
commonly used tests of advanced 
knowledge and reasoning. On the 
other hand, such systems still evince 
elementary failures that raise significant 
questions about how to interpret 
their successes [10]. For example, 
multiple leading edge models show 
remarkable failures at mathematical 

tasks specified via combinations of 
word problems and imagery that 
humans find straightforward [11]. 
Similarly, most state-of-the-art models 
still face challenges with spatial and 
geometric reasoning and detailed 
image understanding, particularly for 
multimodal input [12]. And planning 
as a special form of reasoning is still 
quite weak, especially when it comes to 
longer planning horizons and planning 
actionable steps and assistance for 
and with humans in the physical 
world. However, research on this topic 
is receiving major investments, and 
could enable human-level competency 
on more tasks. This would have 
tremendous economic value but also 
raises questions about societal impact. 

Research Challenges
Despite significant progress in large-
scale deep learning models such as 
transformers, modern AI systems 
are generally considered to not have 
achieved all of the capabilities cited 
in most definitions of AGI. In the 
context of current key deficits, research 
opportunities include the  
following directions:

Architectures Beyond Transformers: 
The standard transformer architecture 
has demonstrated remarkable 
capabilities, but it has fundamental 
limitations, such as fixed context 
windows, lack of explicit memory, 
inability to learn and react to real-time 
feedback from environments, and 
inefficiency and challenges in complex 
reasoning tasks. Research on new 
architectures could provide pathways 
to various definitions of human-
level intelligence. Directions include 
boosting reasoning and generalization 
capabilities via fundamentally new 

architectures and also exploring hybrid 
architectures that combine transformers 
with other models, such as graph neural 
networks, reinforcement learning 
agents, or symbolic reasoning systems.

Long-Term Planning and Reasoning: 
Current AI models struggle with 
long-horizon planning and fail to 
demonstrate robust hierarchical 
reasoning. Unlike humans, they do 
not exhibit strong foresight, struggle 
with multi-step problem-solving, and 
are not naturally inclined to break 
complex goals into subgoals efficiently 
and accurately. And unlike classical AI 
systems from the 1960s onwards, they 
cannot guarantee the correctness of 
their reasoning steps. Recent advances 
in test-time scaling, with the use of 
reinforcement learning to learn to 
reason with chains of thought, are one 
direction of research on endowing 
neural-network-based systems with 
abilities to plan more effectively. These 
advances require important extensions 
that call for proactively estimating 
the risk and cost of each step in the 
plan, and whether each step would 
still be aligned with human values and 
problem specifications.

Generalization Beyond Training Data: 
While LLMs exhibit impressive abilities, 
their generalization capabilities outside 
their training distribution and for 
genuinely novel problems are unclear. 
They can be easily misled by adversarial 
challenges and often lack the ability to 
apply knowledge flexibly across varied 
domains. It may be necessary to learn 
representations, such as programs, that 
are more expressive than circuits, but we 
lack efficient mechanisms for doing so.

Continual Learning: Unlike humans, 
LLMs do not learn continuously from 
experience but rather via a rigid 
pretraining and fine-tuning paradigm. 
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Research is needed on mechanisms 
that allow systems to retain and update 
knowledge in-stream, over time rather 
than relying on static, offline training 
procedures. A shift toward architectures 
and training methodologies that enable 
continual, lifelong learning is essential. 
Opportunities include new forms of 
self-supervision and self-directed 
learning via simulation and exploration 
at the borders of competencies and 
understandings about the environment 
or conceptual challenges [13].

Memory and Recall: Reaching AGI 
may require integration of human-like 
capture and context-sensitive recall, 
including some kind of structured, 
episodic memory. Unlike humans,  
transformers do not maintain a 
persistent, structured memory that 
accumulates relevant aspects of 
experiences over time efficiently over 
extended periods. Efforts are underway 
to supplement LLMs with memory 
mechanisms, typically via external 
machinery. There is great opportunity in 
this direction of research.

Causal and Counterfactual Reasoning: 
While AI models can detect correlations 
in vast datasets, they struggle with 

causal inference and counterfactual 
reasoning. Understanding cause-and-
effect relationships is essential for 
robust decision-making and scientific 
discovery. Causal reasoning with large 
language models is an important 
research direction.

Embodiment and Real-World 
Interaction: Human intelligence 
develops through rich sensorimotor 
interactions with the world. Current 
multimodal models seem to lack 
a deep understanding of physical 
reality and struggle to sense, reason, 
and interact effectively in real-world 
environments. Interesting research 
directions include training AI models 
in rich, interactive environments (e.g., 
robotics, virtual worlds) to build a more 
grounded understanding of reality that 
span multiple rich modalities including 
video, audio, and sensory data.

Alignment, Interpretability, and 
Safety: Ensuring that AI systems 
align with human values and are 
interpretable remains a pressing 
concern with the pursuit of more 
capable, human-level intelligence. 
Black-box AI models, including 
transformers, often yield outputs that 

are difficult to explain, which raises 
safety and trust issues. Moreover, 
LLMs are trained as imitation learners, 
learning verbal behavior that is as 
similar to humans as possible. Because 
human verbal behavior is purposeful—
achieving goals ranging from self-
preservation and finding a mate to 
becoming wealthy and powerful—it is 
likely that LLMs are in effect acquiring 
similar or related goals that they may 
pursue on their own account. Research 
is needed on alignment of values, 
specification of constraints and policies 
that ensure safe operation, and, more 
generally, developing safety measures 
to ensure that highly capable AI systems 
adhere to human intentions. 

Understanding and Guiding Societal 
Influences: As AI systems become more 
capable, safety research, proactive 
governance, and active monitoring of 
the impacts of AI on people and society 
will grow in importance. Rather than 
relying on market forces to ensure 
positive outcomes, the AI research 
community can engage early on and 
continue to stay in touch with policy 
makers and civil society leaders to help 
to shape the capabilities and uses of AI 
and its governance [14]. 
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COMMUNITY OPINION

Artificial General Intelligence (AGI) 

The responses to our survey on questions about 
AGI indicate that opinions are divided regarding 
AGI development and governance. The majority 
(77%) of respondents prioritize designing AI 
systems with an acceptable risk-benefit profile 
over the direct pursuit of AGI (23%). However, there 
remains an ongoing debate about feasibility of 
achieving AGI and about ethical considerations 
related to achieving human-level capabilities.

A substantial majority of respondents (82%) 
believe that systems with AGI should be 
publicly owned if developed by private entities, 
reflecting concerns over global risks and ethical 
responsibilities. However, despite these concerns, 
most respondents (70%) oppose the proposition 
that we should halt research aimed at AGI until  
full safety and control mechanisms are 
established. These answers seem to suggest a 
preference for continued exploration of the topic, 
within some safeguards. 

The majority of respondents (76%) assert that 
“scaling up current AI approaches” to yield AGI is 
“unlikely” or “very unlikely” to succeed, suggesting 
doubts about whether current machine  
learning paradigms are sufficient for achieving 
general intelligence. 

Overall, the responses indicate a cautious yet 
forward-moving approach: AI researchers prioritize 
safety, ethical governance, benefit-sharing, and 
gradual innovation, advocating for collaborative  
and responsible development rather than a race 
toward AGI.
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AI Perception vs. 
Reality

How should we challenge exaggerated claims about AI’s 
capabilities and set realistic expectations?

Main Takeaways
•	 Over the last 70 years, against a background of constant delivery of new and 

important technologies, many AI innovations have generated excessive hype.

•	 Like other technologies these hype trends have followed the general Gartner 
Hype Cycle characterization.

•	 The current Generative AI Hype Cycle is the first introduction to AI for  
perhaps the majority of people in the world and they do not have the tools to 
gauge the validity of many claims.

CHAIR

Rodney Brooks,  
Massachusetts Institute of 
Technology 
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Context & History
Artificial intelligence, or AI, is the field 
that studies the synthesis and analysis 
of computational agents that act 
intelligently [6]. AI has gone through 
hype cycles multiple times since the 
1956 workshop that established the 
name AI and set the course for early 
computer science departments to 
include AI as a major component of 
their research and teaching. All hype 
bubbles eventually burst, as the 
essence of hype is that it is beyond 
reality. Over the decades this has led to 
AI winters where funding has dried up 
for all of AI or for specific aspects of AI 
such as neural networks or robotics. 

A study published 2017 on trends with 
the public perception of AI over a 30-
year period found that discussion about 
AI had sharply increased since 2009 
and that discussions in the public press 
had been consistently more optimistic 
than pessimistic [4]. The study also 
found that hopes about AI applications 
of AI in healthcare and education were 
increasing over time. Another finding 
was that concerns were growing about 
loss of control of AI, ethical implications, 
and the negative impact of AI on work. 

Perhaps the difference in recent years 
with prior periods is that hype has 
gone beyond the pages of academic 
conferences, conference papers, and 
scientific magazines, out into both the 
mainstream media, and social media. 
AI and Artificial Intelligence have 
become common words that non-
technical people have heard about and 
a common subject for leaders of almost 
all countries to talk about. Governments, 
for the first time, have AI policies.

One of the problems is that AI is actually 
a wide-reaching term that can be used 

in many different ways. But now in 
common parlance it is used as if it refers 
to a single thing. In their 2024 book [5] 
Narayanan and Kapoor likened it to the 
language of transport having only one 
noun, ‘vehicle’, say, to refer to bicycles, 
skate boards, nuclear submarines, 
rockets, automobiles, 18 wheeled trucks, 
container ships, etc. It is impossible to 
say almost anything about ‘vehicles’ and 
their capabilities in those circumstances, 
as anything one says will be true for only 
a small fraction of all ‘vehicles’. This lack 
of distinction compounds the problem 
of hype, as particular statements get 
overgeneralized. 

The hype also sets expectations for 
ordinary people. Many are fearful that 
they will lose their jobs to AI in the 
short term. Social scientists then work 
to solve labor disruptions, e.g., for 
displaced truck drivers [6], based on 
predictions about AI (and in this case, 
self-driving trucks) and its adoption that 
turn out to be wildly optimistic. There 
are no deployed self-driving trucks in 
the predicted time frame.

Hype in response to a technology 
trigger is not restricted to AI. Indeed 
the business intelligence company 
Gartner, has deliberately made 
a practice of using a graphical 
representation of hype levels through 
five stages that are common for many 
technologies: (1) technology trigger, 
(2) peak of inflated expectations, (3) 
trough of disillusionment, (4) slope 
of enlightenment, and (5) plateau 
of productivity. They have used this 
framework to track many technologies, 
including quantum computers, block 
chain, autonomous vehicles, nano-
technology, etc. In November 2024 they 
[1] estimated that hype for Generative 
AI had just passed its peak and was on 
the downswing.

The question for AI professionals is 
how to respond to this hype, how to 
question it, and how to help others 
understand what is hubris, while 
maintaining their own intellectual 
modesty and probity. This is hard to do 
in the middle of outsized claims about 
one’s own field, and often it is up to 
future historians to carefully dissect 
past scientific arguments.

Historian Thomas Haigh has tried to 
do such a dissection, almost in real 
time, in a recent series of articles in the 
Communications of the ACM. In [2] he 
gives a post-mortem on the impact of 
over-hype in AI that resulted in what is 
known as the AI-winter in the 1980s. His 
one line summary is: “Fallout from an 
exploding bubble of hype triggered the 
real AI Winter in the late 1980s.” In [3] he 
makes a comparison between the hype 
of today and of those earlier times. 
He summarizes this particular opinion 
piece with the line: “From engines of 
logic to engines of bullshit?”

Research Challenges
Many of us who have worked in AI for 
decades face the challenge of trying to 
remain honest brokers when we see 
that many of the public statements of 
people quite new to the field are out of 
line with reality.

The big question is whether, given 
the dynamics of social media and the 
search for clicks, professional opinions 
and peer reviewed research papers 
have any impact on dampening the 
overclaims and the ways they distort 
common understanding of where AI is, 
and what is its potential in one year, five 
years, ten years, etc.

If we are currently left out of the 
conversations how can we change that? 

AI Perception vs. Reality
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COMMUNITY OPINION

AI Perception vs. Reality

The Community Survey gives perspectives on the 
reactions to the AI Perception vs Reality theme. 
First, the results of the survey are summarized here. 
36% of the survey respondents chose to answer 
the questions for this theme. This is the summary 
breakdown of the responses to each question:

1. How relevant is this Theme for your own 
research? 72% of respondents said it was 
somewhat relevant (24%), relevant (29%) or very 
relevant (19%).

2. The current perception of AI capabilities 
matches the reality of AI research and 
development. 79% of respondents disagreed (47%) 
or strongly disagreed (32%).

3. In what way is the mismatch hindering AI 
research? 90% of respondents agreed that it 
is hindering research: 74% agreeing that the 
directions of AI research are driven by the hype, 
12% saying that theoretical AI research is suffering 
as a result, and 4% saying that less students are 
interested in academic research.

4. Should there be a community-driven initiative 
to counter the hype by fact-checking claims about 
AI? 78% yes; 51% agree and 27% strongly agree.

5. Should there be a community-driven initiative 
to organize public debates on AI perception 
vs reality, with video recordings to be made 
available to all? 74% yes; 46% agree and 28% 
strongly agree.

6. Should there be a community-driven initiative 
to build and maintain a repository of predictions 
about future AI’s capabilities, to be checked 
regularly for validating their accuracy? 59% yes; 
40% agree and 29% strongly agree.

7. Should there be a community-driven initiative 
to educate the public (including the press and 
the VCs) about the diversity of AI techniques 
and research areas? 87% yes; 45% agree and 42% 
strongly agree.

8. Should there be a community-driven initiative 
to develop a method to produce an annual rating 
of the maturity of the AI technology for several 
tasks? 61% yes; 42% agree and 19% strongly agree.

Since the respondents to this theme are self-
selected (about a third of all respondents), 
that bias must be kept in mind. Of those who 
responded, a strong and consistent (though 
not completely monolithic) portion felt that 
the current perception of AI capabilities was 
overblown, that it had a real impact on the field, 
and that the field should find a way to educate 
people about the realities.
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Diversity of AI 
Research Approaches

It is important to encourage and support research on a 
variety of AI paradigms, old and new. This includes diverse 
methodologies (beyond just neural networks) both new and 
old, interdisciplinary collaboration, and consideration of 
societal implications.

Main Takeaways
•	 Historically, the field of AI has simultaneously encompassed many different 

methodologies and research paradigms.

•	 There is a risk that the current convergence of the field towards focusing on 
neural approaches could impede innovation.

•	 We call for active support of research on classical (non-neural) approaches,  
as well as research that combines neural approaches with other approaches, 
and that integrates various paradigms into more complete cognitive 
architectures. And we especially encourage support of creative investigations of 
completely new paradigms that may be the key to overcoming the limitations of 
existing paradigms. 

CHAIR

Peter Stone,  
The University of Texas at 
Austin and Sony AI
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Context & History
There’s a long history in the field of AI 
of separate subcommunities deeply 
pursuing different approaches to 
replicating intelligence in computers. 
Sometimes they have been organized 
around approaches, such as Planning, 
Evolutionary Computation, Constraint 
Satisfaction or Combinatorial Search. 
Sometimes they have been organized 
around applications, such as Computer 
Vision, Natural Language Processing,  
or Robotics. 

While there are usually some areas that 
are more “in fashion” than others, a few 
notable area disputes notwithstanding, 
the community has generally been good 
about tolerating, and even encouraging, 
a diversity of approaches. Indeed, 
it could be argued that the current 
flourishing of neural-networks-based 
generative AI is a result of this tolerance. 
Neural networks were introduced and 
studied even before the term “Artificial 
Intelligence” was coined in the 1950s, 
and there was a lot of research on the 
topic in the 1960s. After they didn’t live 
up to the level of hype about them at the 
time, there was a time when the majority 
of the field considered “connectionism” 
to be a dead end. But a subcommunity 
persisted, and eventually got their day in 
the sun (to say the least).

Current State & Trends
However, there is now a risk that this 
tradition of diversity will be lost. It is 
likely that one or more of the currently 
unfashionable research areas could 
eventually also see its day in the sun. 
But we do not currently know which 

ones. Due to the current dominance of 
neural approaches, many of the other 
approaches are losing steam, or even 
being redefined as no longer AI (A recent 
article in IEEE Spectrum implied in its 
headline that classical search is not AI: 
https://spectrum.ieee.org/chip-design-
ai). Indeed, as a community, we seem to 
be in danger of discouraging newcomers 
from pursuing any alternatives. 

We think that would be a mistake. On 
the contrary, for the long-term health of 
the field, it is important that we find a 
way to support the brave souls who are 
resisting jumping on the bandwagon, 
even though their papers may be less 
likely to be accepted, and/or may 
accumulate fewer citations. Some of 
those papers may nonetheless end up 
being immensely impactful. And even 
(or especially) for people focussing their 
attention on neural networks, we find it 
important that they are knowledgeable 
about alternative paradigms so as not 
to impede innovation by needing to 
“reinvent the wheel”.

This isn’t to say that we condone 
ignoring progress in neural-network-
based generative AI. It may be the 
biggest revolution our field has seen, 
and deserved an enormous amount of 
attention. Just not all the attention.

Research Challenges
We predict that some of the future 
breakthroughs will come from other 
areas, either on their own, or in 
combination with neural and other 
classical methods. 

For example, investigations of the 
planning capabilities of Large Language 

Models find that they are really unable to 
reason and plan effectively [Valmeekam 
et al., 2023; Valmeekam et al., 2024]. 
It may be that some form of symbolic 
reasoning system is required to work 
with the LLM to produce sensible plans. 
Neurosymbolic approaches are moving 
in that direction. And, similarly, conformal 
prediction [Angelopoulos and Bates, 
2023] is an effort to inject probabilistic 
reasoning into neural models. 

We call on the AI community to 
complement its deep focus on 
the capabilities and limitations 
of neural approaches by actively 
supporting research on classical 
(non-neural) approaches such as 
search, optimization, constraint 
satisfaction, and causal reasoning, 
as well as research that combines 
neural approaches with symbolic and 
probabilistic approaches, and that 
integrates various paradigms into more 
complete cognitive architectures.  And 
we especially encourage support of 
creative investigations of completely 
new paradigms that may be the  
key to overcoming the limitations of 
existing paradigms. 

This support could come in the 
form of workshops devoted to such 
investigations, and should also include 
directing some funding towards 
these priorities. We should especially 
seek ways to encourage and support 
researchers, old and new, who are 
interested in pursuing new ideas 
from new perspectives, as well as 
opportunities for intersecting various 
new and existing approaches, even 
though they are likely to struggle to get 
traction at first.

AI Research Approaches Diversity
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COMMUNITY OPINION

57% of those surveyed, or a total of 176 
respondents, chose to answer questions pertaining 
to this theme. We begin by reporting the questions 
asked and the breakdown of responses.

1. How relevant is this Theme for your own 
research? 92% of respondents said it was 
somewhat relevant (23%), relevant (37%) or very 
relevant (32%).

2. Do you think neural approaches alone are 
sufficient to achieve general purpose AI agents 
that match or surpass human intelligence in 
all ways? 16% of respondents said yes, with the 
remainder saying no..

3. What percentage of AI research should be 
devoted to combining neural approaches with 
other approaches? 94% said at least 25%, including 
those who said 25% (31% of respondents), 50% 
(35%) or greater than 50% (28%). One respondent 
answered 0%.

4. What percentage of AI research should be 
devoted to purely non-neural approaches? 86% 
said at least 25%, including those who said 25% 
(37% of respondents), 50% (38%) or greater than 
50% (11%). 3% (6 respondents) answered 0%. 

5. What paradigms beyond neural networks do 
you think deserve the most research attention 
currently? This open-ended question received 3 
responses as follows.

•	 “We need to understand whether the brain  
is quantum.”

•	 “Classic approaches to AI that focus on 
high-level cognition, rely on structured 
representations, take a systems-level 
approach, incorporate ideas from psychology, 
and aim for theoretical insight rather than 
winning competitions.”

•	 “interdisciplinary collaboration and 
consideration of ethical and societal 
implications are extremely important.”

As for all the survey categories, it is important 
to keep in mind that the respondents to this 
theme are self-selected (a little more than half 
of all respondents). Of these respondents, most 
indicated resonance with the main message of this 
theme, namely that it is important to invest to some 
extent in non-neural research. On the other hand, it 
wouldn’t be surprising if many of those who chose 
not to answer these questions feel differently. 
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Research Beyond 
the AI Research 
Community

Expanding AI research to include diverse perspectives and 
expertise from outside the core AI research

Main Takeaways
•	 Incorporating perspectives of social scientists, ethicists, and  

policymakers, to ensure responsible and ethical development and  
deployment of AI technologies

•	 AI is not just an engineering discipline but a societal force that reshapes 
governance, culture, economy, and ethics, requiring holistic approaches for 
responsible development and deployment.

•	 ‘Intelligent support’ and tools that facilitate seamless collaboration between AI 
researchers and experts from diverse domains, ensuring ethical, explainable, 
and application-specific AI solutions.

CHAIRS

Jihie Kim, 
Dongguk University
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Context & History
‘Research beyond the AI research 
community’ emphasizes the 
importance of expanding AI research 
to include diverse perspectives and 
expertise from outside the core AI 
research community. There are three 
directions to this expansion: First, we 
must include perspectives of a.o. social 
scientists, ethicists, digital humanities,  
critical data/ communication / media 
studies, STS, and other disciplines, 
and policymakers, to ensure 
responsible and ethical development 
and deployment of AI technologies. 
Second, researchers and practitioners 
in disciplines that increasingly rely 
on AI (e.g., biology, law, business, 
neuroscience, cognitive science) may 
also influence how we think about AI 
itself. Finally, as multidisciplinary efforts 
increase we can provide ‘intelligent 
support’ and tools for the interaction. 

The societal, ethical, legal, and cultural 
challenges posed by AI highlight 
the necessity of a multidisciplinary 
approach to its development and 
deployment [1,2]. Issues such as 
biased decisions, privacy breaches, 
governance, accountability, and 
inclusivity demand solutions 
that extend beyond the scope of 
engineering. Addressing these 
challenges requires the integration of 
perspectives from humanities, social 
sciences, and other fields to ensure 
that AI systems are aligned with human 
rights, societal values, and global equity.

This broader approach to AI emphasizes 
that its development and impact 
cannot be compartmentalized as 
solely technical advancements or 
applications within specific fields, i.e. 
AI is no longer purely an engineering 
discipline. Instead, it requires a holistic 

understanding of AI as a transformative 
force that reshapes societal structures, 
cultural norms, economic models, 
and ethical frameworks. Such an 
approach considers AI not merely as a 
tool for individual disciplines but as an 
integrated phenomenon that influences 
and is influenced by diverse societal 
factors. By involving diverse expertise, 
including ethicists, legal experts, social 
scientists, and policymakers, we can 
develop governance frameworks and 
accountability mechanisms to address 
concerns like bias, inequality, and 
unintended societal impacts. Efforts 
to enhance inclusivity and diversity in 
AI design can also mitigate risks and 
maximize the benefits of AI applications.

Additionally, “intelligent support” for 
these efforts refers to a combination 
of tools, frameworks, and methods 
that facilitate effective integration of 
AI into diverse fields and collaboration 
between AI researchers and experts  
in other fields.

Current State & Trends
•	 Social scientists and ethicists 

are increasingly involved in 
developing guidelines on how AI 
developers should handle personal 
data, preventing inappropriate 
surveillance, and ensuring the 
responsible use of AI. Also 
governance frameworks such as 
the EU’s AI Act [3] are being actively 
discussed in order to ensure that AI 
development is aligned with human 
rights, justice and societal needs. 

•	 AI has become a key tool for 
healthcare [4], law [5], business [6], 
etc., which increasingly influences 
AI research. For example, AI 
applications in fields demand 
highly accurate, explainable, and 

interpretable AI systems due to the 
importance of accountability and 
transparency. This has spurred more 
research in explainable AI (XAI) as 
well as AI algorithms tailored for 
certain applications, such as cancer 
analysis [7].

•	 Intelligent support’ and tools for 
the interaction between AI & other 
disciplines: So far non-AI tools such 
as GitHub, Kaggle, and research 
repositories have been actively used 
by the communities. We  
expect that intelligent capabilities 
may be able to promote more 
productive interactions.

Research Challenges
In formulating future research, here is a 
set of core pillars that we need to take 
into account:

•	 Societal Dynamics: AI alters the 
fabric of human interaction, labour 
markets, and societal governance. 
Understanding how automation, 
algorithmic decision-making, 
and AI-driven systems impact 
democracy, social justice, and 
equality is critical to harness its 
potential without exacerbating 
existing disparities.

•	 Ethical Integration: Ethics must be 
embedded into AI from its inception. 
This includes navigating dilemmas 
around privacy, accountability, and 
fairness. Ethical considerations 
must go beyond technical checks to 
involve diverse cultural,  
philosophical, and societal inputs 
to create systems that are globally 
adaptable and contextually relevant.

•	 Legal and Regulatory Frameworks: 
We need to address the need for 
regulation and governance, including 

Research Beyond the AI Research Community 
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reevaluation of existing regulations 
for intellectual property, liability, 
and human rights. A collaborative, 
interdisciplinary effort is essential 
to craft governance models that 
increase trust and safety, safeguard 
public interests and contribute to 
increased responsible innovation.

•	 Cultural Adaptation and 
Diversity: As AI technologies 
become pervasive across cultures 
and geographies, they must 
adapt to diverse social norms, 
languages, and traditions. Ensuring 
cultural sensitivity in AI design 
and implementation promotes 
inclusivity and equitable access to 
technological benefits.

•	 Education and Public Awareness: 
The broad impact of AI requires a 
rethinking of education systems to 
prepare future generations for an AI-
infused world. This includes fostering 
a transdisciplinary understanding of 
AI among engineers, social scientists, 
policymakers, and the general  
public to build informed, 
empowered societies.

•	 Environmental Sustainability: The 
energy demands of AI development 
and deployment highlight its 
environmental footprint. A broad 
approach to AI considers how it can 
contribute to sustainability efforts, 

from optimizing resource allocation 
to advancing climate solutions, while 
minimizing ecological harm.

The inclusion of other disciplines is 
more than developing AI technologies 
to understanding and guiding their 
interaction with society, but also to 
ensure that their influence is equitable, 
inclusive, and beneficial across all 
domains of human activity. 

In supporting these efforts and 
promoting interaction between AI and 
other disciplines, future research topics 
can also include the following:

•	 User friendly AI development 
platforms: These can enable people 
from various disciplines to develop 
AI solutions or train a deep learning 
model without much programming 
experience. The platform can also 
guide ethical development of AI. 
Intelligent user interfaces and 
visualization tools can allow people 
to understand AI model outputs and 
gain insights. 

•	 Domain Specific AI tools: AI systems 
tailored to the particular needs of 
a field, such as medical diagnosis, 
cyber security, law, etc. We look 
forward to intelligent capabilities 
that understand the needs of the 
field workers, and provide seamless 
support for domain-specific 

workflows and reasoning processes, 
which should be much more 
powerful than current tools such as 
domain-specific pretrained models 
or knowledge-based systems

•	 AI enabled Collaboration Tools: 
Intelligent environments that assist 
AI researchers and experts in other 
fields to work together. 

https://artificialintelligenceact.eu/
https://www.nature.com/collections/dbfcjjigbi
https://www.nature.com/articles/s41551-023-01034-0
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Research Beyond the AI Research Community 

We began by asking the community which 
activities they considered most important. The top 
three priorities were: 1) Promoting interdisciplinary 
collaboration in AI research 2) Developing AI 
solutions for specific application areas, such as 
healthcare, law, and business, and 3) Enhancing 
public understanding of AI’s impact. The next tier 
of priorities included: 4) Integrating AI education 
into non-computer science disciplines, 5) 
Establishing accountability and liability standards, 
and 6) Addressing societal and cultural impacts of 
AI through diverse disciplinary perspectives and 
promoting inclusivity in AI design. While activities 
such as optimizing resource allocation and 
developing governance models received slightly 
lower ratings, the differences were not significant. 
Overall, the community expressed a strong 
interest in pursuing a broad range of initiatives.

When asked about key areas of focus, an 
overwhelming 88% of respondents identified 
healthcare as the top priority. This was followed by 
climate (50%), education (45%), and biology (43%). 
Other areas of interest included manufacturing 
(38%), business (19%), law (18%), and finance (15%). 
The respondents listed the following areas as 
additional candidates: agriculture, transportation, 
brain diseases, physics, elder care, disaster 
response, media analytics, and cybersecurity. 

Regarding tools to support interdisciplinary 
collaboration, the highest-rated option was 
user-friendly AI development platforms (65%), 
followed by AI-enabled collaboration tools 
(57%) and domain-specific AI tools (53%). 
Beyond technological support, the community 
suggested the following actions for fostering 
collaboration: educational support, incentives 
to encourage cross-disciplinary work, formation 
of interdisciplinary research groups, and 
sustainable funding for long-term projects. As 
multidisciplinary efforts become increasingly 
important to AI research, the community seemed 
to emphasize the urgent need for stronger support 
from diverse perspectives.

Approximately one-third of all participants 
responded to this theme, with the majority 
(around 90%) identifying AI as their primary 
field. Although input from other disciplines was 
limited, the survey suggests a strong interest 
within our community in integrating diverse 
perspectives into research and enhanced support 
for interdisciplinary collaboration.
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Role of Academia
State-of-the art AI is now largely driven by the private sector, 
and universities struggle to compete: they need to find a role in 
the new era of “big AI”.

Main Takeaways
•	 The centre of gravity of AI research now lies behind the closed doors of big  

tech companies.

•	 Universities cannot compete with big tech companies with respect to  
the resources – data, compute, and salaries – that are being mobilised by the 
private sector.

•	 Universities struggle to retain AI faculty, and struggle to persuade AI graduates 
to remain in academia.

•	 The challenge is therefore now to find a role for academia (and publicly funded 
research) in the new era of “big AI”. 

CHAIR

Michael Wooldridge, 
University of Oxford
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Context & History
While there has always been industrial 
interest in AI, for much of the history 
of the field, progress was driven largely 
by academia. The AI Turing award 
winners (Feigenbaum, McCarthy, 
Minsky, Newell, Pearl, Reddy, Simon)
were university-based, and the key 
concepts of both symbolic and neural 
AI were all developed within academia. 
The deep learning Turing award winners 
(Bengio, Hinton, LeCun) all did their 
Laureate work in universities. But 
over the past decade, the centre of 
gravity in cutting edge AI has shifted 
decisively. In particular, primary work 
on generative AI is now being carried 
out largely within the private sector, and 
a small number of big tech companies 
in particular. These companies have the 
data and compute resources available 
to train large scale state of the art AI 
systems, and moreover are able to 
offer salaries that universities could not 
compete with. 

Current State & Trends
These changes raise a number of issues 
for universities.

First, the demand for AI research talent 
has led to an exodus of AI talent from 
universities to the private sector. In one 
notably early case, Uber hired an entire 
research lab of roboticists from CMU [1]. 
Even the world’s leading universities are 
unable to offer packages to compete 
with the startling salaries offered by 
big tech AI labs; nor can they muster 
the associated research resources 
that such companies routinely offer. 
The upshot has been a hollowing-out 
of many university AI groups, with 
many faculty on seemingly permanent 
leave, or on part-time contracts that 

leave them largely disconnected from 
the conventional university business. 
Hiring AI faculty has been extremely 
challenging for more than a decade: PhD 
graduates prefer to move directly from 
their studies into the private sector.

At the same time the nature of AI 
research has changed dramatically. At 
the turn of the century the dominant 
paradigm with (for example) the 
AAAI community was conventionally 
scientific, drawing from mathematics 
(definition-lemma-theorem-proof). 
By contrast, the methodology of deep 
learning and its associated areas, which 
dominates at the time of writing, is 
predominantly that of engineering. 

As a consequence the demand within 
universities for AI courses in particular, 
and computing courses more generally, 
has skyrocketed, and this, coupled with 
the issues we refer to above, has placed 
intense pressure on departments, whose 
staff struggle to cope with the level of 
demand. Some ivy league computing 
departments report that while they 
have been given what amounts to a 
blank cheque for hiring new faculty in 
high demand areas, they simply find it 
impossible to hire enough high-quality 
faculty. In some departments, this 
situation has reached crisis levels, with 
faculty reporting stress and other mental 
health issues as a consequence.

There is a need for all students 
(regardless of their discipline) to 
become literate in AI, the use of AI 
tools is changing education and the 
way subject are taught, and at the same 
time students in AI must be educated 
in a more multi-disciplinary context to 
be aware of the ethical, legal, societal 
and economic implications of AI. This 
in turn places further demands on 
universities, who need to rethink how 

they teach and assess students when 
those students have powerful general 
purpose AI tools available.

One irony of the present situation 
is that a key role of universities 
historically has been to provide a talent 
pipeline to satiate the demands of the 
technology world for technical talent. 
But universities struggle to achieve this 
simply because they don’t have the 
capacity – because of the hollowing-
out of university departments by those 
same companies. 

At the same time, the nature of cutting 
edge AI research means that universities 
are simply unable to carry out work 
that competes with big private sector AI 
labs. A recent estimate from Meta put 
the cost of building their latest GPT-
class models at ~ $440 million. That is 
several orders of magnitude outside 
the scope of all but a tiny number of 
the world’s very richest universities; 
and most nation states would struggle 
to put assemble such a package for a 
national level initiative: in 2023, the UK 
contemplated a sovereign AI capability, 
and one option considered was building 
a “BritGPT”. The proposal foundered 
at an early stage because of (i) cost, (ii) 
risk, and (iii) being seen to compete 
with the private sector in an area where 
innovation (and development costs) 
have been led by the private sector 
[2]. Recent developments such as 
that around the Chinese open-source 
DeepSeek Large Language model may 
offer an opportunity in this regard as it 
could make AI available at lower costs 
– although it presents challenges of its 
own with respect to privacy and security.

The objectives of the private sector are 
different from those of universities. 
The private sector is driven mainly by 
profit, whereas universities aspire to 

Role of Academia
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1.	 https://www.fastcompany.com/3046902/carnegie-mellon-in-a-crisis-after-uber-poached-40-of-its-researchers
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Role of Academia

contribute to society through research 
and education. These goals can be 
in competition with each other. One 
effect is that results from the private 
sector are not always fully available 
for inspection or evaluation. Also, 
the high costs of the experiments 
implies that results are not always 
reproducible. Academics have a role to 
play in providing independent advice 
and interpretations of these results 
and their consequences.  The private 
sector focuses more on the short term, 
and universities and society more on a 
longer term perspective.

These observation together with 
the massive costs of generative AI 
research has also motivated calls 
for large public-funded initiatives, 
for instance, the plan supported by 
European Commission President 
Ursula von der Leyen for a CERN for 
AI. This vision is supported and was 
actually initiated by a large number 
of AI researchers in Europe gathered 
in the CAIRNE network. It is modelled 
after the renowned CERN for Nuclear 
Research in Geneva, and should serve 
as an alternative and attractive research 
environment to big tech companies, 
and should solve problems of public 
interest. Numerous countries have also 
developed their national strategies and 
funding programs for AI. 

Research Challenges
•	 How should universities respond to 

the new era of “Big AI”?

•	 What form of AI research can 
universities/public sector research 
most usefully engage in – what 
should be the AI research agenda of 
universities going forward?

•	 How should universities respond to 
the challenges of hiring and retaining 
AI faculty and students?

•	 How can publicly funded  
universities best work with big tech 
AI companies?

https://www.fastcompany.com/3046902/carnegie-mellon-in-a-crisis-after-uber-poached-40-of-its-researchers
https://lordslibrary.parliament.uk/large-language-models-and-generative-ai-house-of-lords-communications-and-digital-committee-report/
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Role of Academia

Most respondents (approx. 75%) agreed the 
universities have difficulty recruiting in AI, 
and agreed that universities have difficulty in 
engaging in resource intensive AI research (80%). 
Respondents felt that offering better salaries and 
investing in better compute resources were ways 
of attracting people; offering joint appointments 
and providing other benefits were also seen as 
possibilities. There was less agreement on whether 
universities needed to refocus their research 
priorities, although it seems that respondents 
felt that focussing on theoretical AI and 
multidisciplinary AI were areas where universities 
could be competitive. Public sector funding for 
large scale compute was seen as attractive (70%). 
There was overwhelming agreement that academia 
was very relevant to the future of AI research. 
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Geopolitical Aspects 
& Implications of AI 

The rise of AI is reshaping global power dynamics and the 
investment priorities of nations, influencing economic, security, 
and governance structures, while posing challenges to equity 
and control.

Main Takeaways
•	 Investments, coordination, best practices, and regulation of AI have become 

international in scope. While collaboration among nations is increasing with 
governmental and non-governmental programs, AI is also a geopolitical 
battleground, with countries competing for economic, military, and strategic 
dominance: Nations are seeking to leverage AI to gain economic, military, and 
strategic advantages.

•	 Regulation vs. competition: The tensions between AI regulation,  
confidentiality, and the race for technological supremacy complicates 
international collaboration.

•	 Ethical and social impact: The deployment of AI by nation states, per policies 
and competitive goals raises concerns over justice, fairness, and democratic 
values, requiring new governance frameworks, some of which will need to be 
international in scope.

CHAIRS
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Context & History
AI has shifted from being solely a 
research and technology driven field 
to becoming a key element of global 
economic and security strategies, 
with governance efforts emerging to 
shape its responsible use [1,2]. Recent 
developments, including advancements 
in large language models and AI-
powered automation, have intensified 
anxieties and competition among 
nations, particularly between the U.S., 
China, Russia, and the European Union.

The current AI landscape is increasingly 
shaped by economic interests and 
competing approaches to governance. 
Over the past several years, countries 
have taken different yet related 
perspectives on strategy, investments, 
and governance of AI both domestically 
and in their international engagements, 
and in their proclamations and 
engagements internationally. Thes 
dynamics have also been subject to 
shifts driven by political changes.

In the U.S., President Biden issued an 
Executive Order [3] on “Safe, Secure, 
and Trustworthy Artificial Intelligence” 
in October 2023, building upon the AI 
Bill of Rights, developed by the Office 
of Science and Technology Policy [4]. 
The order emphasized the protection of 
civil rights and privacy, and mandated 
rigorous standards for AI safety and 
security. U.S. Federal agencies were 
tasked with responsibilities with 
fielding and governing AI systems 
that are transparent, equitable, and 
free from algorithmic discrimination, 
aiming to prevent AI from exacerbating 
biases or infringing upon individual 
rights. The U.S. also set up a national 
AI Safety Institute [5] and worked with 
other nations to build an International 
Network of AI Safety Institutes [6]. 

In January 2025, Donald Trump revoked 
the Biden executive order shortly 
after his inauguration, replacing it with 
the Executive Order on “Removing 
Barriers to American Leadership in 
Artificial Intelligence,” which focused 
on sustaining and enhancing America’s 
global dominance “...in order  
to promote human flourishing, 
economic competitiveness, and 
national security.” [7]

The European Union’s AI Act [8], 
enacted in August 2024 after four years 
of deliberations, employs a product 
safety approach to AI regulation that 
classifies AI systems based on risk 
levels—unacceptable, high, limited, and 
minimal—and imposes corresponding 
obligations. High-risk AI applications, 
such as those in healthcare and 
transportation, must comply with strict 
safety, transparency, and oversight 
requirements to ensure they do 
not compromise health, safety, or 
fundamental rights. 

China has described AI as a “major 
strategic opportunity” and has called 
for the country to be a world leader 
in AI by 2030 [9]. China was one of the 
first countries to introduce regulations 
that govern the use of AI systems, 
including detailed regulations governing 
recommendation algorithms that  
went into effect in 2021 [10]. China 
continues to integrate AI into its 
surveillance infrastructure. 

In 2019, Russian President Vladimir 
Putin issued a decree for accelerating 
the development of AI in the Russian 
Federation with a scope extending to 
2030. In 2023, the decree was updated 
to consider a plan for development 
including the laying out of key 
principles for AI development “like 
protecting human rights, ensuring 

security, technological sovereignty and 
supporting competition.” [11]

The need for international coordination 
and agreements on governance of 
multiple aspects of AI, including 
defense and establishing norms for 
human rights and principles for the 
responsible fielding of AI technologies, 
emphasized in the 2020 report of the 
Congressionally mandated U.S. National 
Security Commission on AI (NSCAI) [12]. 
The report called for alliances of nations  
sharing Western democratic values 
to coordinate strategies. On the side 
of defense, the report called for 
establishing international venues 
to discuss the impact of AI on crisis 
stability among competitor nations and 
to develop international standards of 
practice for the development, testing, 
and use of AI-enabled and autonomous 
weapon systems. 

Recent international efforts underscore 
the growing recognition of cooperative 
AI governance. Organizations such as 
the OECD [13], the UN [14] and GPAI 
have advocated for principles of global 
international governance. High profile 
international meetings—such as the 
UK AI Safety Summit (Bletchley Park in 
November 2023), the AI Seoul Summit 
(May 2024), and the AI Action Summit 
(Paris in 2025)—demonstrate an ongoing 
commitment to global coordination. 

At the Seoul Summit, representatives 
of Australia, Canada, the European 
Union, France, Germany, Italy, Japan, 
the Republic of Korea, the Republic of 
Singapore, the United Kingdom, and 
the United States of America affirmed 
a common “dedication to fostering 
international cooperation and dialogue 
on artificial intelligence (Al) in the face 
of its unprecedented advancements 
and the impact on our economies 

Geopolitical Aspects & Implications of AI  
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and societies.” [15]. In November of 
2024, the AI Safety Summit in San 
Francisco followed up on the AI Seoul 
Summit declaration by launching the 
International Network of AI Safety 
Institutes [16]. Discussions among 
governments, civil society groups, and 
industry have continued across multiple 
forums, including the Partnership on AI 
multiparty stakeholder organization. 

Needs and opportunities for 
international coordination are growing 
around norms and regulations on 
human rights, privacy, and safety of AI 
systems. Rising issues of international 
scope include questions about 
regulations with considerations of 
intellectual property with regard to 
the data used to train large language 
models. Key concerns that span 
borders include the handling of AI-
generated synthetic content employed 
in disinformation and with AI-based 
threats in the realm of biosecurity, such 
as the use of AI-powered protein design 
tools for developing dangerous toxins 
and pathogens.

Challenges persist as national interests 
and regulatory approaches remain 
fragmented, fueling tensions over the 
role of AI in trade, security, and human 
rights. These divisions were evident 
during the AI Action Summit in February 
2025, where the EU and China pushed 
for stricter AI regulations, while the U.S. 
and UK opted out of a global AI safety 
declaration, citing concerns that overly 
stringent rules could stifle innovation. 
France and other EU digital leaders, 
meanwhile, advocated for a more 
flexible regulatory framework to attract 
investment and prevent stagnation. 

While these summits have certainly 
facilitated useful discussions 
surrounding AI safety and regulation, 

they have been criticized for excluding 
many countries, particularly from the 
Global South. Also, regions such as 
Southeast Asia, despite being active 
in AI safety and regulation, often 
have limited participation in global 
AI safety discussions. This selective 
participation has led to questions 
about the legitimacy and effectiveness 
of these gatherings in addressing 
global AI challenges [26], and to 
guarantee significant commitments 
to AI safety, with many indicating a 
lack of concrete safety measures, 
vague policy recommendations, and 
an overemphasis on speculative risks 
rather than immediate AI challenges, 
despite the publication of the 
International AI Safety Report 2025 [27].

At the same time, economic 
competition remains intense. The 
U.S. Stargate initiative, valued at 
$500 billion, aims to strengthen the 
country’s AI infrastructure and global 
competitiveness, while the EU’s €200 
billion InvestAI initiative seeks to 
drive AI research and deployment 
across Europe. India, meanwhile, is 
emphasizing equitable AI development, 
calling for greater inclusivity and 
open-source collaboration to ensure AI 
benefits all regions.

While these efforts reflect growing 
recognition of the transformative 
potential of AI technologies, they also 
underscore a persistent challenge: 
without a unified governance 
framework, AI regulation will likely 
remain fragmented, exacerbating risks 
related to security, economic inequality, 
and geopolitical instability. Without 
coordinated international agreements, 
these divisions could reinforce existing 
global inequalities and deepen 
geopolitical tensions over AI control and 
governance [18]. 

Current State & Trends
1. AI is increasingly a defining factor in 
national and regional power, influencing 
trade policies, military strategies, 
and diplomatic relations [19]. The 
U.S. and China currently dominate AI 
leadership, while Europe prioritizes 
ethical considerations and regulatory 
oversight. At the same time, AI-driven 
surveillance and data collection are 
shaping governance models worldwide, 
particularly in autocratic regimes that 
prioritize state security over individual 
freedoms, raising concerns about 
privacy and civil liberties.

2. The regulatory landscape remains 
fragmented [20], with stark differences 
in governance approaches among major 
global players. The EU has advanced 
regulation in the form of the AI Act to 
promote AI safety and accountability. 
However, under a new administration, 
the U.S. has pivoted away from its 
recent intensive focus on AI safety and 
human rights-centered regulation.

3. Governments have been 
coordinating via such efforts as the set 
of international meetings at the UK, 
Seoul, and Paris, and the launch of the 
International Network of AI  
Safety Institutes. 

4. Despite the absence of binding 
international agreements, coalitions 
of private corporations, civil society 
groups, and non-profits have worked on 
voluntary agreements and standards. 
Examples include:

•	 Addressing concerns about AI-
powered disinformation and 
manipulation: The Coalition 
for Content Provenance and 
Authenticity (C2PA), which 
developed a cryptographic standard 
for media provenance, now adopted 
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by major tech companies, and the 
Tech Accord to Combat Deceptive 
Use of AI in 2024 Elections, which 
established commitments regarding 
AI-generated content.

•	 Addressing AI-enabled biosecurity 
challenges: Efforts have focused 
on developing principles and best 
practices for responsible AI use in 
biosciences [21] and international 
coordination of nucleic acid 
screening protocols [22].

5. One of the most contentious issues 
is the debate over open vs. proprietary 
AI models. Key concerns include 
accessibility, bias, transparency in 
training data, and the potential for 
state and non-state actors to misuse 
AI. Additionally, geopolitical tensions 
have intensified, as the U.S. imposes 
restrictions on semiconductor exports 
to several countries, including China 
as well as some EU member states, 
affecting global supply chains and 
exacerbating technological divides 
between major AI powers.

6. Beyond governance and competition, 
AI presents ethical and societal 
challenges [23]. AI-driven decision-
making in critical sectors such as human 
resources, healthcare, law enforcement, 
and financial services raises concerns 
about bias, discrimination, and social 
inequality. The rapid development of 
autonomous and semi-autonomous 
weapons and AI-powered military 
systems by global powers such as the 
US, China, Russia and Ukraine further 
complicates international security, 
challenging existing norms of warfare 
and accountability. To mitigate these 
risks, AI governance must balance the 
need for innovation with strong ethical 
safeguards, ensuring AI technologies are 
developed and deployed in a way that 

promotes fairness, security,  
and equitable distribution of benefits 
across societies.

Research Challenges
AI Governance Models

•	 Developing AI governance 
frameworks, treaties, norms, and 
practices that are international in 
scope: Study on the prospects of 
harmonizing AI regulations across 
nations, reducing fragmentation and 
conflicts in global AI governance. 
Areas of international cooperation 
can focus on norms and regulations 
around surveillance and human 
rights, intellectual property 
challenges with AI, norms, treaties, 
principles, accountabilities, and best 
practices around the development, 
deployment and use of autonomous 
and semi-autonomous weapon 
systems, agreements on international 
norms and regulations on AI and 
biosecurity, and agreements 
around the threat of AI-generated 
misinformation, with regulations and 
best practices around establishing 
the provenance of authentic and AI-
generated content.

•	 Strengthening enforcement 
mechanisms in global AI governance: 
analyzing how organizations such as 
the UN, OECD, and GPAI can enhance 
compliance and accountability in 
international AI cooperation.

•	 AI and global governance 
frameworks: studying the role of AI 
in shaping international regulatory 
frameworks, including how different 
governance models influence 
geopolitical stability.

Geopolitical Risks of AI

•	 AI-driven misinformation and 
influence campaigns: investigating 
the role of AI in generating and 
combating deepfake technology, 
automated disinformation, and 
propaganda used by state and non-
state actors in geopolitical conflicts

•	 AI and supply chain geopolitics: 
developing AI tools to monitor and 
mitigate disruptions in global AI-
related supply chains, particularly 
regarding semiconductor shortages 
and export restrictions.

•	 Algorithmic trade policies and 
economic forecasting: enhancing 
AI models that predict and 
analyze the impact of AI-driven 
automation and trade restrictions 
(e.g., semiconductor export bans) on 
global markets).

•	 AI in cybersecurity and defense: 
advancing AI-driven cybersecurity 
and cyber-physical threat detection 
and response [24] and resilience 
mechanisms to counter state-
sponsored cyberwarfare and protect 
critical national infrastructure [25].

•	 AI and biosecurity challenges: 
advancing coordinative activities 
such as regulating screening 
protocols for nucleic acid synthesis 
organizations, regulation of benchtop 
synthesis, and logging of orders to 
detect and deter abuse [22].

•	 AI in military strategy, including 
AI-informed decision making 
and the development and use of 
autonomous weapons: researching 
the implications of AI-driven 
autonomous weapons, with regard 
to stability, crisis management, 
and strategic deterrence, ensuring 
accountability and compliance with 
international humanitarian law.
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Geopolitical Aspects & Implications of AI  

Promoting Ethical AI Development

•	 Developing interdisciplinary 
frameworks for AI fairness and 
accountability: researching how 
political science, economics, and 
ethics can inform AI governance 
models that balance national 
interests, corporate incentives, and 
global equity.

•	 Advancing AI governance in 
geopolitically fragmented 

environments: exploring legal, 
diplomatic, and technological 
strategies to overcome economic 
and ideological divisions, enhancing 
the enforceability of global AI 
agreements, such as the G7 AI Code 
of Conduct.

•	 Examining the risks of techno-
solutionism in AI policy: investigating 
the unintended consequences of 
AI-driven decision-making through 

multidisciplinary research,  
ensuring AI complements rather 
than overrides human agency  
and ethical governance.
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Geopolitical Aspects & Implications of AI  

The survey results highlight concerns surrounding 
AI governance, security, economic shifts, and 
ethical considerations. While the geopolitical 
impact of AI is acknowledged, there are few 
researchers for whom this is their primary focus. 
A majority (49.47%) believe AI scientists should 
engage in policy discussions, with strong support 
for international governance mechanisms such as 
the UN (53.68%) and bilateral agreements (63.16%). 
Key challenges include cybersecurity, warfare, 
economic displacement, and the balance between 
government and corporate control.

Military AI applications raise ethical concerns, 
with 36.84% strongly agreeing and another 
37.89% agreeing on their significance. Support 
for international cooperation is strong, with over 
40% advocating for agreements on the use of AI 
in public data, weapon deployment restrictions, 
and privacy regulations. Respondents stressed 
the need for enforceable, specific agreements in 
contrast to symbolic declarations.
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